6 research outputs found

    Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites

    Get PDF
    The origin of large miarolitic (also known as “chamber”) pegmatites is not fully understood although they may have great economic value. The formation of cavities in magmatic bodies is related to melt degassing and gas or fluid flow through partially solidified magma. In this paper, the origin of the Volyn pegmatite field, located in the Palaeoproterozoic Korosten anorthosite–mangerite–charnockite–granite (AMCG) complex, North-Western region of the Ukrainian Shield, is discussed. Pegmatites of the field host deposits of piezoelectric quartz that is accompanied by gem-quality beryl and topaz. The Volyn pegmatite field is confined to granites located in the south-western part of the Korosten complex and extends for 22 km along the contact with the anorthosite massif within the Korosten plutonic complex. Geological data indicate hybridization of basic melts and partly crystallized granites, as well as direct impact of fluids derived from basic melts on the chamber pegmatites. The new U–Pb zircon ages obtained for granites and pegmatites of the Korosten complex confirm that the rock assemblage in the northern part of the complex crystallized between 1800 and 1780 Ma, whereas rocks in the southern part intruded mainly between 1768 and 1755 Ma. U–Pb zircon ages for granites from the south-western part of the Korosten complex indicate that granites were emplaced at 1770–1765 Ma, a few million years prior to the intrusion of the gabbro–anorthosite massif (1762–1758 Ma), while chamber pegmatites in these granites crystallized at 1760 ± 3 Ma, coevally with the basic rocks. Ultimately, the formation of the chamber pegmatites was related to the reheating of the semi-crystallized granitic intrusion and to fluids migrating from the underlying gabbro–anorthosite massif.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon

    Get PDF
    © 2017 Elsevier B.V.The Ukrainian shield hosts two Palaeoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) complexes (the Korosten and Korsun-Novomyrhorod complexes) that intruded Palaeoproterozoic continental crust in north-western and central parts of the shield, respectively. We report results of U-Pb zircon and baddeleyite dating of 16 samples from the Korosten plutonic complex (KPC), and 6 samples from the Korsun-Novomyrhorod plutonic complex (KNPC). Fifteen zircon samples from both complexes were also analysed for Hf isotopes. These new, together with previously published data indicate that the formation of the KPC started at c. 1815 Ma and continued until 1743 Ma with two main phases of magma emplacement at 1800–1780 and 1770–1758 Ma. Each of the main phases of magmatic activity included both basic and silicic members. The emplacement history of the KNPC is different from that of the KPC. The vast majority of the KNPC basic and silicic rocks were emplaced between c. 1757 and 1750 Ma; the youngest stages of the complex are represented by monzonites and syenites that were formed between 1748 and 1744 Ma. Both Ukrainian AMCG complexes are closely associated in space and time with mantle-derived mafic and ultramafic dykes. The Hf isotope ratios in the zircons indicate a predominantly crustal source for the initial melts with some input of juvenile Hf from mantle-derived tholeiite melts. The preferred model for the formation of the Ukrainian AMCG complexes involves the emplacement of large volumes of hot mantle-derived tholeiitic magma into the lower crust. This resulted in partial melting of mafic lower-crustal material, mixing of lower crustal and tholeiitic melts, and formation of ferromonzodioritic magmas. Further fractional crystallization of the ferromonzodioritic melts produced the spectrum of basic rocks in the AMCG complexes. Emplacement of the ferromonzodioritic and tholeiitic melts into the middle crust and their partial crystallization caused abundant melting of the ambient crust and formation of the large volumes of granitic rocks present in the complexes

    The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon

    Get PDF
    © 2017 Elsevier B.V.The Ukrainian shield hosts two Palaeoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) complexes (the Korosten and Korsun-Novomyrhorod complexes) that intruded Palaeoproterozoic continental crust in north-western and central parts of the shield, respectively. We report results of U-Pb zircon and baddeleyite dating of 16 samples from the Korosten plutonic complex (KPC), and 6 samples from the Korsun-Novomyrhorod plutonic complex (KNPC). Fifteen zircon samples from both complexes were also analysed for Hf isotopes. These new, together with previously published data indicate that the formation of the KPC started at c. 1815 Ma and continued until 1743 Ma with two main phases of magma emplacement at 1800–1780 and 1770–1758 Ma. Each of the main phases of magmatic activity included both basic and silicic members. The emplacement history of the KNPC is different from that of the KPC. The vast majority of the KNPC basic and silicic rocks were emplaced between c. 1757 and 1750 Ma; the youngest stages of the complex are represented by monzonites and syenites that were formed between 1748 and 1744 Ma. Both Ukrainian AMCG complexes are closely associated in space and time with mantle-derived mafic and ultramafic dykes. The Hf isotope ratios in the zircons indicate a predominantly crustal source for the initial melts with some input of juvenile Hf from mantle-derived tholeiite melts. The preferred model for the formation of the Ukrainian AMCG complexes involves the emplacement of large volumes of hot mantle-derived tholeiitic magma into the lower crust. This resulted in partial melting of mafic lower-crustal material, mixing of lower crustal and tholeiitic melts, and formation of ferromonzodioritic magmas. Further fractional crystallization of the ferromonzodioritic melts produced the spectrum of basic rocks in the AMCG complexes. Emplacement of the ferromonzodioritic and tholeiitic melts into the middle crust and their partial crystallization caused abundant melting of the ambient crust and formation of the large volumes of granitic rocks present in the complexes

    The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon

    No full text
    © 2017 Elsevier B.V.The Ukrainian shield hosts two Palaeoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) complexes (the Korosten and Korsun-Novomyrhorod complexes) that intruded Palaeoproterozoic continental crust in north-western and central parts of the shield, respectively. We report results of U-Pb zircon and baddeleyite dating of 16 samples from the Korosten plutonic complex (KPC), and 6 samples from the Korsun-Novomyrhorod plutonic complex (KNPC). Fifteen zircon samples from both complexes were also analysed for Hf isotopes. These new, together with previously published data indicate that the formation of the KPC started at c. 1815 Ma and continued until 1743 Ma with two main phases of magma emplacement at 1800–1780 and 1770–1758 Ma. Each of the main phases of magmatic activity included both basic and silicic members. The emplacement history of the KNPC is different from that of the KPC. The vast majority of the KNPC basic and silicic rocks were emplaced between c. 1757 and 1750 Ma; the youngest stages of the complex are represented by monzonites and syenites that were formed between 1748 and 1744 Ma. Both Ukrainian AMCG complexes are closely associated in space and time with mantle-derived mafic and ultramafic dykes. The Hf isotope ratios in the zircons indicate a predominantly crustal source for the initial melts with some input of juvenile Hf from mantle-derived tholeiite melts. The preferred model for the formation of the Ukrainian AMCG complexes involves the emplacement of large volumes of hot mantle-derived tholeiitic magma into the lower crust. This resulted in partial melting of mafic lower-crustal material, mixing of lower crustal and tholeiitic melts, and formation of ferromonzodioritic magmas. Further fractional crystallization of the ferromonzodioritic melts produced the spectrum of basic rocks in the AMCG complexes. Emplacement of the ferromonzodioritic and tholeiitic melts into the middle crust and their partial crystallization caused abundant melting of the ambient crust and formation of the large volumes of granitic rocks present in the complexes

    The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon

    No full text
    © 2017 Elsevier B.V.The Ukrainian shield hosts two Palaeoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) complexes (the Korosten and Korsun-Novomyrhorod complexes) that intruded Palaeoproterozoic continental crust in north-western and central parts of the shield, respectively. We report results of U-Pb zircon and baddeleyite dating of 16 samples from the Korosten plutonic complex (KPC), and 6 samples from the Korsun-Novomyrhorod plutonic complex (KNPC). Fifteen zircon samples from both complexes were also analysed for Hf isotopes. These new, together with previously published data indicate that the formation of the KPC started at c. 1815 Ma and continued until 1743 Ma with two main phases of magma emplacement at 1800–1780 and 1770–1758 Ma. Each of the main phases of magmatic activity included both basic and silicic members. The emplacement history of the KNPC is different from that of the KPC. The vast majority of the KNPC basic and silicic rocks were emplaced between c. 1757 and 1750 Ma; the youngest stages of the complex are represented by monzonites and syenites that were formed between 1748 and 1744 Ma. Both Ukrainian AMCG complexes are closely associated in space and time with mantle-derived mafic and ultramafic dykes. The Hf isotope ratios in the zircons indicate a predominantly crustal source for the initial melts with some input of juvenile Hf from mantle-derived tholeiite melts. The preferred model for the formation of the Ukrainian AMCG complexes involves the emplacement of large volumes of hot mantle-derived tholeiitic magma into the lower crust. This resulted in partial melting of mafic lower-crustal material, mixing of lower crustal and tholeiitic melts, and formation of ferromonzodioritic magmas. Further fractional crystallization of the ferromonzodioritic melts produced the spectrum of basic rocks in the AMCG complexes. Emplacement of the ferromonzodioritic and tholeiitic melts into the middle crust and their partial crystallization caused abundant melting of the ambient crust and formation of the large volumes of granitic rocks present in the complexes

    The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon

    Get PDF
    © 2017 Elsevier B.V.The Ukrainian shield hosts two Palaeoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) complexes (the Korosten and Korsun-Novomyrhorod complexes) that intruded Palaeoproterozoic continental crust in north-western and central parts of the shield, respectively. We report results of U-Pb zircon and baddeleyite dating of 16 samples from the Korosten plutonic complex (KPC), and 6 samples from the Korsun-Novomyrhorod plutonic complex (KNPC). Fifteen zircon samples from both complexes were also analysed for Hf isotopes. These new, together with previously published data indicate that the formation of the KPC started at c. 1815 Ma and continued until 1743 Ma with two main phases of magma emplacement at 1800–1780 and 1770–1758 Ma. Each of the main phases of magmatic activity included both basic and silicic members. The emplacement history of the KNPC is different from that of the KPC. The vast majority of the KNPC basic and silicic rocks were emplaced between c. 1757 and 1750 Ma; the youngest stages of the complex are represented by monzonites and syenites that were formed between 1748 and 1744 Ma. Both Ukrainian AMCG complexes are closely associated in space and time with mantle-derived mafic and ultramafic dykes. The Hf isotope ratios in the zircons indicate a predominantly crustal source for the initial melts with some input of juvenile Hf from mantle-derived tholeiite melts. The preferred model for the formation of the Ukrainian AMCG complexes involves the emplacement of large volumes of hot mantle-derived tholeiitic magma into the lower crust. This resulted in partial melting of mafic lower-crustal material, mixing of lower crustal and tholeiitic melts, and formation of ferromonzodioritic magmas. Further fractional crystallization of the ferromonzodioritic melts produced the spectrum of basic rocks in the AMCG complexes. Emplacement of the ferromonzodioritic and tholeiitic melts into the middle crust and their partial crystallization caused abundant melting of the ambient crust and formation of the large volumes of granitic rocks present in the complexes
    corecore