28 research outputs found
The Prevalence of Immunologic Injury in Renal Allograft Recipients with De Novo Proteinuria
Post-transplant proteinuria is a common complication after renal transplantation; it is associated with reduced graft and recipient survival. However, the prevalence of histological causes has been reported with considerable variation. A clinico-pathological re-evaluation of post-transplant proteinuria is necessary, especially after dismissal of the term âchronic allograft nephropathy,â which had been considered to be an important cause of proteinuria. Moreover, urinary protein can promote interstitial inflammation in native kidney, whether this occurs in renal allograft remains unknown. Factors that affect the graft outcome in patients with proteinuria also remain unclear. Here we collected 98 cases of renal allograft recipients who developed proteinuria after transplant, histological features were characterized using Banff scoring system. Cox proportional hazard regression models were used for graft survival predictors. We found that transplant glomerulopathy was the leading (40.8%) cause of post-transplant proteinuria. Immunological causes, including transplant glomerulopathy, acute rejection, and chronic rejection accounted for the majority of all pathological causes of proteinuria. Nevertheless, almost all patients that developed proteinuria had immunological lesions in the graft, especially for interstitial inflammation. Intraglomerular C3 deposition was unexpectedly correlated with the severity of proteinuria. Moreover, the severity of interstitial inflammation was an independent risk factor for graft loss, while high level of hemoglobin was a protective factor for graft survival. This study revealed a predominance of immunological parameters in renal allografts with post-transplant proteinuria. These parameters not only correlate with the severity of proteinuria, but also with the outcome of the graft
Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA
Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (âŒ5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis
Chromium (VI)-Induced Immunotoxicity and Intracellular Accumulation in Human Primary Dendritic Cells
Molecular analysis of rejection and injury in liver transplant biopsies: The INTERLIVER STUDY
Background. Distinguishing T cell-mediated rejection (TCMR) from other sources of inflammation in liver transplant biopsies by histology has been challenging. Recent progress in molecular assessment of kidney, heart, and lung transplants suggests that microarray biopsy phenotyping would provide novel insights for liver transplantation. Method. We prospectively studied 102 liver transplant biopsies (90% for indications) from USA, Canada, Europe, and Australia with gene expression microarrays (INTERLIVER ClinicalTrials.gov NCT03193151). We used 453 kidney-derived rejection-associated transcripts (RATs) in unsupervised archetypal (AA) and principal component analyses (PCA). Results. Every liver biopsy yielded abundant high quality RNA for microarray analysis. In PCA, principal component 1 correlated with transcripts associated with inflammation (e.g. PTPRC/CD45), TCMR (e.g. Granzyme A) and interferon-gamma effects (e.g. GBP5), and with histologic portal triaditis; PC2 correlated with injury-induced transcripts (e.g. SERPINB8). AA identified 3 archetypes (A1, A2, and A3) and scored every biopsy for similarity to each: S1normal, S2TCMR, and S3injury (Figure 1, with biopsies colored by highest score). Biopsy groups were studied for expression of previously annotated transcript sets (Table 1). S1normal biopsies lacked rejection, inflammation, and injury. S2TCMR biopsies had high expression of rejection- and IFNG-inducible transcripts. S3injury biopsies had increased transcripts reflecting injury and cellular damage (e.g. DAMPs), and were early post-transplant i.e. had donation-implantation injury. Additional 5-archetype analyses suggested a small subclass of late biopsies with plasma cells and mast cell transcripts, which in other organs are associated with fibrosis. No biopsies manifested molecular changes suggesting ABMR. Conclusion. Molecular phenotyping classifies liver transplant biopsies as normal, TCMR, and early injury. The incidence of biopsies with TCMR-like changes (25%) was higher than in other organ transplants which raises the possibility that immunoregulatory mechanisms such as T cell exhaustion may be operating
Clinical triage of patients on kidney replacement therapy presenting with COVID-19: An ERACODA registry analysis
Background: Patients on kidney replacement therapy (KRT) are at very high risk of coronavirus disease 2019 (COVID-19). The triage pathway for KRT patients presenting to hospitals with varying severity of COVID-19 illness remains ill-defined. We studied the clinical characteristics of patients at initial and subsequent hospital presentations and the impact on patient outcomes. Methods: The European Renal Association COVID-19 Database (ERACODA) was analysed for clinical and laboratory features of 1423 KRT patients with COVID-19 either hospitalized or non-hospitalized at initial triage and those re-presenting a second time. Predictors of outcomes (hospitalization, 28-day mortality) were then determined for all those not hospitalized at initial triage. Results: Among 1423 KRT patients with COVID-19 [haemodialysis (HD), n = 1017; transplant, n = 406), 25% (n = 355) were not hospitalized at first presentation due to mild illness (30% HD, 13% transplant). Of the non-hospitalized patients, only 10% (n = 36) re-presented a second time, with a 5-day median interval between the two presentations (interquartile range 2-7 days). Patients who re-presented had worsening respiratory symptoms, a decrease in oxygen saturation (97% versus 90%) and an increase in C-reactive protein (26 versus 73 mg/L) and were older (72 vs 63 years) compared with those who did not return a second time. The 28-day mortality between early admission (at first presentation) and deferred admission (at second presentation) was not significantly different (29% versus 25%; P = 0.6). Older age, prior smoking history, higher clinical frailty score and self-reported shortness of breath at first presentation were identified as risk predictors of mortality when re-presenting after discharge at initial triage. Conclusions: This study provides evidence that KRT patients with COVID-19 and mild illness can be managed effectively with supported outpatient care and with vigilance of respiratory symptoms, especially in those with risk factors for poor outcomes. Our findings support a risk-stratified clinical approach to admissions and discharges of KRT patients presenting with COVID-19 to aid clinical triage and optimize resource utilization during the ongoing pandemic
Association of obesity with 3-month mortality in kidney failure patients with COVID-19
Background: In the general population with coronavirus disease 2019 (COVID-19), obesity is associated with an increased risk of mortality. Given the typically observed obesity paradox among patients on kidney function replacement therapy (KFRT), especially dialysis patients, we examined the association of obesity with mortality among dialysis patients or living with a kidney transplant with COVID-19. Methods: Data from the European Renal Association COVID-19 Database (ERACODA) were used. KFRT patients diagnosed with COVID-19 between 1 February 2020 and 31 January 2021 were included. The association of Quetelet's body mass index (BMI) (kg/m2), divided into: <18.5 (lean), 18.5-24.9 (normal weight), 25-29.9 (overweight), 30-34.9 (obese I) and â„35 (obese II/III), with 3-month mortality was investigated using Cox proportional-hazards regression analyses. Results: In 3160 patients on KFRT (mean age: 65 years, male: 61%), 99 patients were lean, 1151 normal weight (reference), 1160 overweight, 525 obese I and 225 obese II/III. During follow-up of 3 months, 28, 20, 21, 23 and 27% of patients died in these categories, respectively. In the fully adjusted model, the hazard ratios (HRs) for 3-month mortality were 1.65 [95% confidence interval (CI): 1.10, 2.47], 1 (ref.), 1.07 (95% CI: 0.89, 1.28), 1.17 (95% CI: 0.93, 1.46) and 1.71 (95% CI: 1.27, 2.30), respectively. Results were similar among dialysis patients (N = 2343) and among those living with a kidney transplant (N = 817) (Pinteraction = 0.99), but differed by sex (Pinteraction = 0.019). In males, the HRs for the association of aforementioned BMI categories with 3-month mortality were 2.07 (95% CI: 1.22, 3.52), 1 (ref.), 0.97 (95% CI: 0.78. 1.21), 0.99 (95% CI: 0.74, 1.33) and 1.22 (95% CI: 0.78, 1.91), respectively, and in females corresponding HRs were 1.34 (95% CI: 0.70, 2.57), 1 (ref.), 1.31 (95% CI: 0.94, 1.85), 1.54 (95% CI: 1.05, 2.26) and 2.49 (95% CI: 1.62, 3.84), respectively. Conclusion: In KFRT patients with COVID-19, on dialysis or a kidney transplant, obesity is associated with an increased risk of mortality at 3 months. This is in contrast to the obesity paradox generally observed in dialysis patients. Additional studies are required to corroborate the sex difference in the association of obesity with mortality
Recovery of dialysis patients with COVID-19: health outcomes 3 months after diagnosis in ERACODA
Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8â6.3%) or a nursing home (âŒ5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis