92 research outputs found

    Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq

    Get PDF
    Bacterial vaginosis is the most common gynecological disorder affecting women of reproductive age. Bacterial vaginosis is frequently associated with the development of a Gardnerella vaginalis biofilm. Recent data indicates that G. vaginalis biofilms are more tolerant to antibiotics and are able to incorporate other bacterial vaginosis -associated species, yielding a multi-species biofilm. However, despite its apparent role in bacterial vaginosis, little is known regarding the molecular determinants involved in biofilm formation by G. vaginalis. To gain insight into the role of G. vaginalis in the pathogenesis of bacterial vaginosis, we carried out comparative transcriptomic analysis between planktonic and biofilm phenotypes, using RNA-sequencing. Significant differences were found in the expression levels of 815 genes. A detailed analysis of the results obtained was performed based on direct and functional gene interactions. Similar to other bacterial species, expression of genes involved in antimicrobial resistance were elevated in biofilm cells. In addition, our data indicate that G. vaginalis biofilms assume a characteristic response to stress and starvation conditions. The abundance of transcripts encoding proteins involved in glucose and carbon metabolism was reduced in biofilms. Surprisingly, transcript levels of vaginolysin were reduced in biofilms relative to planktonic cultures. Overall, our data revealed that gene-regulated processes in G. vaginalis biofilms resulted in a protected form of bacterial growth, characterized by low metabolic activity. This phenotype may contribute towards the chronic and recurrent nature of bacterial vaginosis. This suggests that G. vaginalis is capable of drastically adjusting its phenotype through an extensive change of gene expressionThis work was presented at Biofilms7 meeting (26–28 June 2016, Porto, Portugal) and was awarded the Biofilms7—SPM Young Researcher Award. N.C. is an Investigador FCT. This work was funded by Fundação para a Ciência e a Tecnologia (FCT) by the strategic project of UID/BIO/04469/2013 unit and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), and by the National Institutes of Health; P60 MD002256 “VCU NIMHD Comprehensive Center of Excellence”. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The following authors had an individual FCT fellowship: J.C. (SFRH/BD/93963/2013) and A.F. (SFRH/BPD/99961/2014)

    Genomic sequence analysis and characterization of Sneathia amnii sp. nov

    Get PDF
    Background Bacteria of the genus Sneathia are emerging as potential pathogens of the female reproductive tract. Species of Sneathia, which were formerly grouped with Leptotrichia, can be part of the normal microbiota of the genitourinary tracts of men and women, but they are also associated with a variety of clinical conditions including bacterial vaginosis, preeclampsia, preterm labor, spontaneous abortion, post-partum bacteremia and other invasive infections. Sneathia species also exhibit a significant correlation with sexually transmitted diseases and cervical cancer. BecauseSneathia species are fastidious and rarely cultured successfully in vitro; and the genomes of members of the genus had until now not been characterized, very little is known about the physiology or the virulence of these organisms. Results Here, we describe a novel species, Sneathia amnii sp. nov, which closely resembles bacteria previously designated Leptotrichia amnionii . As part of the Vaginal Human Microbiome Project at VCU, a vaginal isolate of S. amnii sp. nov. was identified, successfully cultured and bacteriologically cloned. The biochemical characteristics and virulence properties of the organism were examined in vitro, and the genome of the organism was sequenced, annotated and analyzed. The analysis revealed a reduced circular genome of ~1.34 Mbp, containing ~1,282 protein-coding genes. Metabolic reconstruction of the bacterium reflected its biochemical phenotype, and several genes potentially associated with pathogenicity were identified. Conclusions Bacteria with complex growth requirements frequently remain poorly characterized and, as a consequence, their roles in health and disease are unclear. Elucidation of the physiology and identification of genes putatively involved in the metabolism and virulence of S. amnii may lead to a better understanding of the role of this potential pathogen in bacterial vaginosis, preterm birth, and other issues associated with vaginal and reproductive health

    In Silico Derivation of HLA-Specific Alloreactivity Potential from Whole Exome Sequencing of Stem Cell Transplant Donors and Recipients: Understanding the Quantitative Immuno-biology of Allogeneic Transplantation

    Get PDF
    Donor T cell mediated graft vs. host effects may result from the aggregate alloreactivity to minor histocompatibility antigens (mHA) presented by the HLA in each donor-recipient pair (DRP) undergoing stem cell transplantation (SCT). Whole exome sequencing has demonstrated extensive nucleotide sequence variation in HLA-matched DRP. Non-synonymous single nucleotide polymorphisms (nsSNPs) in the GVH direction (polymorphisms present in recipient and absent in donor) were identified in 4 HLA-matched related and 5 unrelated DRP. The nucleotide sequence flanking each SNP was obtained utilizing the ANNOVAR software package. All possible nonameric-peptides encoded by the non-synonymous SNP were then interrogated in-silico for their likelihood to be presented by the HLA class I molecules in individual DRP, using the Immune-Epitope Database (IEDB) SMM algorithm. The IEDB-SMM algorithm predicted a median 18,396 peptides/DRP which bound HLA with an IC50 of <500nM, and 2254 peptides/DRP with an IC50 of <50nM. Unrelated donors generally had higher numbers of peptides presented by the HLA. A similarly large library of presented peptides was identified when the data was interrogated using the Net MHCPan algorithm. These peptides were uniformly distributed in the various organ systems. The bioinformatic algorithm presented here demonstrates that there may be a high level of minor histocompatibility antigen variation in HLA-matched individuals, constituting an HLA-specific alloreactivity potential. These data provide a possible explanation for how relatively minor adjustments in GVHD prophylaxis yield relatively similar outcomes in HLA matched and mismatched SCT recipients.Comment: Abstract: 235, Words: 6422, Figures: 7, Tables: 3, Supplementary figures: 2, Supplementary tables:

    Species-level classification of the vaginal microbiome

    Get PDF
    Background The application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina. High-resolution identification of bacterial taxa, minimally to the species level, is necessary to fully understand the association of the vaginal microbiome with bacterial vaginosis, sexually transmitted infections, pregnancy complications, menopause, and other physiological and infectious conditions. However, most current taxonomic assignment strategies based on metagenomic 16S rDNA sequence analysis provide at best a genus-level resolution. While surveys of 16S rRNA gene sequences are common in microbiome studies, few well-curated, body-site-specific reference databases of 16S rRNA gene sequences are available, and no such resource is available for vaginal microbiome studies. Results We constructed the Vaginal 16S rDNA Reference Database, a comprehensive and non-redundant database of 16S rDNA reference sequences for bacterial taxa likely to be associated with vaginal health, and we developed STIRRUPS, a new method that employs the USEARCH algorithm with a curated reference database for rapid species-level classification of 16S rDNA partial sequences. The method was applied to two datasets of V1-V3 16S rDNA reads: one generated from a mock community containing DNA from six bacterial strains associated with vaginal health, and a second generated from over 1,000 mid-vaginal samples collected as part of the Vaginal Human Microbiome Project at Virginia Commonwealth University. In both datasets, STIRRUPS, used in conjunction with the Vaginal 16S rDNA Reference Database, classified more than 95% of processed reads to a species-level taxon using a 97% global identity threshold for assignment. Conclusions This database and method provide accurate species-level classifications of metagenomic 16S rDNA sequence reads that will be useful for analysis and comparison of microbiome profiles from vaginal samples. STIRRUPS can be used to classify 16S rDNA sequence reads from other ecological niches if an appropriate reference database of 16S rDNA sequences is available

    Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers

    Get PDF
    Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways

    Whole Exome Sequencing to Estimate Alloreactivity Potential Between Donors and Recipients in Stem Cell Transplantation

    Full text link
    Whole exome sequencing was performed on HLA-matched stem cell donors and transplant recipients to measure sequence variation contributing to minor histocompatibility antigen differences between the two. A large number of nonsynonymous single nucleotide polymorphisms were identified in each of the nine unique donor-recipient pairs tested. This variation was greater in magnitude in unrelated donors as compared with matched related donors. Knowledge of the magnitude of exome variation between stem cell transplant recipients and donors may allow more accurate titration of immunosuppressive therapy following stem cell transplantation.Comment: 12 pages- main article, 29 pages total, 5 figures, 1 supplementary figur

    The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies

    Get PDF
    Background Characterizing microbial communities via next-generation sequencing is subject to a number of pitfalls involving sample processing. The observed community composition can be a severe distortion of the quantities of bacteria actually present in the microbiome, hampering analysis and threatening the validity of conclusions from metagenomic studies. We introduce an experimental protocol using mock communities for quantifying and characterizing bias introduced in the sample processing pipeline. We used 80 bacterial mock communities comprised of prescribed proportions of cells from seven vaginally-relevant bacterial strains to assess the bias introduced in the sample processing pipeline. We created two additional sets of 80 mock communities by mixing prescribed quantities of DNA and PCR product to quantify the relative contribution to bias of (1) DNA extraction, (2) PCR amplification, and (3) sequencing and taxonomic classification for particular choices of protocols for each step. We developed models to predict the “true” composition of environmental samples based on the observed proportions, and applied them to a set of clinical vaginal samples from a single subject during four visits. Results We observed that using different DNA extraction kits can produce dramatically different results but bias is introduced regardless of the choice of kit. We observed error rates from bias of over 85% in some samples, while technical variation was very low at less than 5% for most bacteria. The effects of DNA extraction and PCR amplification for our protocols were much larger than those due to sequencing and classification. The processing steps affected different bacteria in different ways, resulting in amplified and suppressed observed proportions of a community. When predictive models were applied to clinical samples from a subject, the predicted microbiome profiles were better reflections of the physiology and diagnosis of the subject at the visits than the observed community compositions. Conclusions Bias in 16S studies due to DNA extraction and PCR amplification will continue to require attention despite further advances in sequencing technology. Analysis of mock communities can help assess bias and facilitate the interpretation of results from environmental samples

    Phylogenetic and syntenic data support a single horizontal transference to a Trypanosoma ancestor of a prokaryotic proline racemase implicated in parasite evasion from host defences

    Get PDF
    Abstract\ud \ud Background\ud Proline racemase (PRAC) enzymes of Trypanosoma cruzi (TcPRAC), the agent of Chagas disease, and Trypanosoma vivax (TvPRAC), the agent of livestock trypanosomosis, have been implicated in the B-cells polyclonal activation contributing to immunosuppression and the evasion of host defences. The similarity to prokaryotic PRAC and the absence in Trypanosoma brucei and Trypanosoma congolense have raised many questions about the origin, evolution, and functions of trypanosome PRAC (TryPRAC) enzymes.\ud \ud \ud Findings\ud We identified TryPRAC homologs as single copy genes per haploid genome in 12 of 15 Trypanosoma species, including T. cruzi and T. cruzi marinkellei, T. dionisii, T. erneyi, T. rangeli, T. conorhini and T. lewisi, all parasites of mammals. Polymorphisms in TcPRAC genes matched T. cruzi genotypes: TcI-TcIV and Tcbat have unique genes, while the hybrids TcV and TcVI contain TcPRACA and TcPRACB from parental TcII and TcIII, respectively. PRAC homologs were identified in trypanosomes from anurans, snakes, crocodiles, lizards, and birds. Most trypanosomes have intact PRAC genes. T. rangeli possesses only pseudogenes, maybe in the process of being lost. T. brucei, T. congolense and their allied species, except the more distantly related T. vivax, have completely lost PRAC genes.\ud \ud \ud \ud Conclusions\ud The genealogy of TryPRAC homologs supports an evolutionary history congruent with the Trypanosoma phylogeny. This finding, together with the synteny of PRAC loci, the relationships with prokaryotic PRAC inferred by taxon-rich phylogenetic analysis, and the absence in trypanosomatids of any other genera or in bodonids or euglenids suggest that a common ancestor of Trypanosoma gained PRAC gene by a single and ancient horizontal gene transfer (HGT) from a Firmicutes bacterium more closely related to Gemella and other species of Bacilli than to Clostridium as previously suggested. Our broad phylogenetic study allowed investigation of TryPRAC evolution over long and short timescales. TryPRAC genes diverged to become species-specific and genotype-specific for T. cruzi and T. rangeli, with resulting genealogies congruent with those obtained using vertically inherited genes. The inventory of TryPRAC genes described here is the first step toward the understanding of the roles of PRAC enzymes in trypanosomes differing in life cycles, virulence, and infection and immune evasion strategies.U.S. National Institutes of Health (NIH)U.S. National Science Foundation (NSF)SENACYT (Secretaría Nacional de Ciencia, Tecnología e Innovación)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP (grant #2013/14622-3, São Paulo Research Foundation)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade de São Paulo (USP

    The Vaginal Microbiome: Disease, Genetics and the Environment

    Get PDF
    The vagina is an interactive interface between the host and the environment. Its surface is covered by a protective epithelium colonized by bacteria and other microorganisms. The ectocervix is nonsterile, whereas the endocervix and the upper genital tract are assumed to be sterile in healthy women. Therefore, the cervix serves a pivotal role as a gatekeeper to protect the upper genital tract from microbial invasion and subsequent reproductive pathology. Microorganisms that cross this barrier can cause preterm labor, pelvic inflammatory disease, and other gynecologic and reproductive disorders. Homeostasis of the microbiome in the vagina and ectocervix plays a paramount role in reproductive health. Depending on its composition, the microbiome may protect the vagina from infectious or non-infectious diseases, or it may enhance its susceptibility to them. Because of the nature of this organ, and the fact that it is continuously colonized by bacteria from birth to death, it is virtually certain that this rich environment evolved in concert with its microbial flora. Specific interactions dictated by the genetics of both the host and microbes are likely responsible for maintaining both the environment and the microbiome. However, the genetic basis of these interactions in both the host and the bacterial colonizers is currently unknown. _Lactobacillus_ species are associated with vaginal health, but the role of these species in the maintenance of health is not yet well defined. Similarly, other species, including those representing minor components of the overall flora, undoubtedly influence the ability of potential pathogens to thrive and cause disease. Gross alterations in the vaginal microbiome are frequently observed in women with bacterial vaginosis, but the exact etiology of this disorder is still unknown. There are also implications for vaginal flora in non-infectious conditions such as pregnancy, pre-term labor and birth, and possibly fertility and other aspects of women&#x2019;s health. Conversely, the role of environmental factors in the maintenance of a healthy vaginal microbiome is largely unknown. To explore these issues, we have proposed to address the following questions:&#xd;&#xa;&#xd;&#xa;*1.&#x9;Do the genes of the host contribute to the composition of the vaginal microbiome?* We hypothesize that genes of both host and bacteria have important impacts on the vaginal microbiome. We are addressing this question by examining the vaginal microbiomes of mono- and dizygotic twin pairs selected from the over 170,000 twin pairs in the Mid-Atlantic Twin Registry (MATR). Subsequent studies, beyond the scope of the current project, may investigate which host genes impact the microbial flora and how they do so.&#xd;&#xa;*2.&#x9;What changes in the microbiome are associated with common non-infectious pathological states of the host?* We hypothesize that altered physiological (e.g., pregnancy) and pathologic (e.g., immune suppression) conditions, or environmental exposures (e.g., antibiotics) predictably alter the vaginal microbiome. Conversely, certain vaginal microbiome characteristics are thought to contribute to a woman&#x2019;s risk for outcomes such as preterm delivery. We are addressing this question by recruiting study participants from the ~40,000 annual clinical visits to women&#x2019;s clinics of the VCU Health System.&#xd;&#xa;*3.&#x9;What changes in the vaginal microbiome are associated with relevant infectious diseases and conditions?* We hypothesize that susceptibility to infectious disease (e.g. HPV, _Chlamydia_ infection, vaginitis, vaginosis, etc.) is impacted by the vaginal microbiome. In turn, these infectious conditions clearly can affect the ability of other bacteria to colonize and cause pathology. Again, we are exploring these issues by recruiting participants from visitors to women&#x2019;s clinics in the VCU Health System.&#xd;&#xa;&#xd;&#xa;Three kinds of sequence data are generated in this project: i) rDNA sequences from vaginal microbes; ii) whole metagenome shotgun sequences from vaginal samples; and iii) whole genome shotgun sequences of bacterial clones selected from vaginal samples. The study includes samples from three vaginal sites: mid-vaginal, cervical, and introital. The data sets also include buccal and perianal samples from all twin participants. Samples from these additional sites are used to test the hypothesis of a per continuum spread of bacteria in relation to vaginal health. An extended set of clinical metadata associated with these sequences are deposited with dbGAP. We have currently collected over 4,400 samples from ~100 twins and over 450 clinical participants. We have analyzed and deposited data for 480 rDNA samples, eight whole metagenome shotgun samples, and over 50 complete bacterial genomes. These data are available to accredited investigators according to NIH and Human Microbiome Project (HMP) guidelines. The bacterial clones are deposited in the Biodefense and Emerging Infections Research Resources Repository (&#x22;http://www.beiresources.org/&#x22;:http://www.beiresources.org/). &#xd;&#xa;&#xd;&#xa;In addition to the extensive sequence data obtained in this study, we are collecting metadata associated with each of the study participants. Thus, participants are asked to complete an extensive health history questionnaire at the time samples are collected. Selected clinical data associated with the visit are also obtained, and relevant information is collected from the medical records when available. This data is maintained securely in a HIPAA-compliant data system as required by VCU&#x2019;s Institutional Review Board (IRB). The preponderance of these data (i.e., that judged appropriate by NIH staff and VCU&#x2019;s IRB are deposited at dbGAP (&#x22;http://www.ncbi.nlm.nih.gov/gap&#x22;:http://www.ncbi.nlm.nih.gov/gap). Selected fields of this data have been identified by NIH staff as &#x2018;too sensitive&#x2019; and are not available in dbGAP. Individuals requiring access to these data fields are asked to contact the PI of this project or NIH Program Staff. &#xd;&#xa
    corecore