40 research outputs found

    Efficacy of AZM therapy in patients with gingival overgrowth induced by Cyclosporine A: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In daily clinical practice of a dental department it's common to find gingival overgrowth (GO) in periodontal patients under treatment with Cyclosporine A (CsA). The pathogenesis of GO and the mechanism of action of Azithromycin (AZM) are unclear. A systematic review was conducted in order to evaluate the efficacy of Azithromycin in patients with gingival overgrowth induced by assumption of Cyclosporine A.</p> <p>Methods</p> <p>A bibliographic search was performed using the online databases MEDLINE, EMBASE and Cochrane Central of Register Controlled Trials (CENTRAL) in the time period between 1966 and September 2008.</p> <p>Results</p> <p>The literature search retrieved 24 articles; only 5 were Randomised Controlled Trials (RCTs), published in English, fulfilled the inclusion criteria. A great heterogeneity between proposed treatments and outcomes was found, and this did not allow to conduct a quantitative meta-analysis. The systematic review revealed that a 5-day course of Azithromycin with Scaling and Root Planing reduces the degree of gingival overgrowth, while a 7-day course of metronidazole is only effective on concomitant bacterial over-infection.</p> <p>Conclusion</p> <p>Few RCTs on the efficacy of systemic antibiotic therapy in case of GO were found in the literature review. A systemic antibiotic therapy without plaque and calculus removal is not able to reduce gingival overgrowth. The great heterogeneity of diagnostic data and outcomes is due to the lack of precise diagnostic methods and protocols about GO. Future studies need to improve both diagnostic methods and tools and adequate classification aimed to determine a correct prognosis and an appropriate therapy for gingival overgrowth.</p

    Experimental and numerical investigation of gas jet and liquid film interaction

    No full text
    The topic of this thesis is the interaction between gas jet flow and a liquid film dragged by a solid substrate. This method, known as jet-wiping, is used in several industrial processes. Hot-dip galvanization of steel strips is an important application, where jet wiping is used to control the thickness of the liquid zinc that is applied on a continuous steel substrate. Unsteady phenomena in the process lead to the creation of waves on the liquid film, which is known as undulation. This unwanted phenomenon deteriorates the quality of the final product.The aim of the current study is to identify the causes of the undulation and propose possible solutions to tackle the problem. This is achieved through studying the hydrodynamic interaction between the gas jet flow and the liquid film. Experiments on a laboratory test facility and numerical simulations with 3 different Computational Fluid Dynamics (CFD) codes are employed for that purpose.Doctorat en Sciences de l'ingénieurinfo:eu-repo/semantics/nonPublishe

    Cellular mechanisms underlying the pathogenesis of cyclosporin A-induced gingival overgrowth

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN023294 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Experimental and numerical investigation of gas jet and liquid film interaction

    No full text
    The topic of this thesis is the interaction between gas jet flow and a liquid film dragged by a solid substrate. This method, known as jet-wiping, is used in several industrial processes. Hot-dip galvanization of steel strips is an important application, where jet wiping is used to control the thickness of the liquid zinc that is applied on a continuous steel substrate. Unsteady phenomena in the process lead to the creation of waves on the liquid film, which is known as undulation. This unwanted phenomenon deteriorates the quality of the final product.The aim of the current study is to identify the causes of the undulation and propose possible solutions to tackle the problem. This is achieved through studying the hydrodynamic interaction between the gas jet flow and the liquid film. Experiments on a laboratory test facility and numerical simulations with 3 different Computational Fluid Dynamics (CFD) codes are employed for that purpose.Doctorat en Sciences de l'ingénieurinfo:eu-repo/semantics/nonPublishe

    CFD simulation of gas-jet wiping process

    No full text
    This paper presents a study of the gas-jet wiping process, which is used in coating techniques to control the final coating thickness applied on a substrate. Numerical simulations are performed using the FLUENT commercial software, with the Volume of Fluid (VOF) model coupled with Large Eddy Simulation (LES). The comparison with results from an analytical model, (with and without surface tension), and from dedicated experiments shows good agreement. The realizable k-ϵ turbulence model is used to reduce the computation time, but with no satisfactory agreement compared with LES and experiments

    CFD simulation of gas-jet wiping process

    No full text
    corecore