93 research outputs found

    UAV flight coordination for communication networks:Genetic algorithms versus game theory

    Get PDF
    The autonomous coordinated flying for groups of unmanned aerial vehicles that maximise network coverage to mobile ground-based units by efficiently utilising the available on-board power is a complex problem. Their coordination involves the fulfilment of multiple objectives that are directly dependent on dynamic, unpredictable and uncontrollable phenomena. In this paper, two systems are presented and compared based on their ability to reposition fixed-wing unmanned aerial vehicles to maintain a useful airborne wireless network topology. Genetic algorithms and non-cooperative games are employed for the generation of optimal flying solutions. The two methods consider realistic kinematics for hydrocarbon-powered medium-altitude, long-endurance aircrafts. Coupled with a communication model that addresses environmental conditions, they optimise flying to maximising the number of supported ground-based units. Results of large-scale scenarios highlight the ability of genetic algorithms to evolve flexible sets of manoeuvres that keep the flying vehicles separated and provide optimal solutions over shorter settling times. In comparison, game theory is found to identify strategies of predefined manoeuvres that maximise coverage but require more time to converge

    Properties of a relativistic equation of state for collapse-driven supernovae

    Full text link
    We study characteristics of the relativistic equation of state (EOS) for collapse-driven supernovae, which is derived by relativistic nuclear many body theory. Recently the relativistic EOS table has become available as a new complete set of physical EOS for numerical simulations of supernova explosion. We examine this EOS table by using general relativistic hydrodynamics of the gravitational collapse and bounce of supernova cores. In order to study dense matter in dynamical situation, we perform simplified calculations of core collapse and bounce by following adiabatic collapse with the fixed electron fraction for a series of progenitor models. This is intended to give us ``approximate models'' of prompt explosion. We investigate the profiles of thermodynamical quantities and the compositions during collapse and bounce. We also perform the calculations with the Lattimer-Swesty EOS to compare the properties of dense matter. As a measure of the stiffness of the EOS, we examine the explosion energy of the prompt explosion with electron capture totally suppressed. We study the derivative of the thermodynamical quantities obtained by the relativistic EOS to discuss the convective condition in neutron-rich environment, which may be important in the delayed explosion.Comment: 42 pages, 13 figures, Nucl. Phys. A. accepte

    Is Large Lepton Mixing Excluded?

    Full text link
    The original \bnum -(or νˉτ\bar{\nu}_{\tau}-) energy spectrum from the gravitational collapse of a star has a larger average energy than the spectrum for \bnue since the opacity of \bnue exeeds that of \bnum (or ντ\nu_{\tau}). Flavor neutrino conversion, \bnue \leftrightarrow \bnum, induced by lepton mixing results in partial permutation of the original \bnue and \bnum spectra. An upper bound on the permutation factor, p0.35p \leq 0.35 (99%\% CL) is derived using the data from SN1987A and the different models of the neutrino burst. The relation between the permutation factor and the vacuum mixing angle is established, which leads to the upper bound on this angle. The excluded region, sin22θ>0.70.9\sin^2 2\theta > 0.7 - 0.9, covers the regions of large mixing angle solutions of the solar neutrino problem: ``just-so" and, partly, MSW, as well as part of region of νeνμ\nu_{e} - \nu_{\mu} oscillation space which could be responsible for the atmospheric muon neutrino deficit. These limits are sensitive to the predicted neutrino spectrum and can be strengthened as supernova models improve.Comment: 20 pages, TeX file. For hardcopy with figures contact [email protected]. Institute for Advanced Study number AST 93/1

    Identifying the neutrino mass spectrum from a supernova neutrino burst

    Full text link
    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν\nu mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and anineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing Ue32|U_{e3}|^2 to values as low as 10410310^{-4} - 10^{-3}.Comment: 53 pages, 13eps figures. Substantial changes made, new results, figures and tables adde

    Bayesian analysis of neutrinos observed from supernova SN 1987A

    Get PDF
    We present a Bayesian analysis of the energies and arrival times of the neutrinos from supernova SN 1987A detected by the Kamiokande II, IMB, and Baksan detectors, and find strong evidence for two components in the neutrino signal: a long time scale component from thermal Kelvin-Helmholtz cooling of the nascent neutron star, and a brief (~< 1 s), softer component similar to that expected from emission by accreting material in the delayed supernova scenario. In the context of this model, we show that the data constrain the electron antineutrino rest mass to be less than 5.7 eV with 95% probability. Our analysis takes advantage of significant advances that have occured in the years since the detections in both our understanding of the supernova mechanism and our ability to analyze sparse data. As a result there are substantial differences between our inferences and those found in earlier studies. We find that two-component models for the neutrino signal make the data >100 times more probable than single-component models. In addition, the radius and binding energy of the nascent neutron star implied by single-component models deviates significantly from the values predicted by current neutron star models, whereas those implied by models with an accretion component are in complete agreement with the predictions. As a result, two-component models are hundreds to thousands of times more probable than single-component models. The neutrino data thus provide the first direct observational evidence in favor of the delayed supernova scenario over the prompt scenario. (Abridged abstract)Comment: 46 pages, 12 figures, RevTeX; for submission to Physical Review

    Investigation into the Presence of and Serological Response to XMRV in CFS Patients

    Get PDF
    The novel human gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), originally described in prostate cancer, has also been implicated in chronic fatigue syndrome (CFS). When later reports failed to confirm the link to CFS, they were often criticised for not using the conditions described in the original study. Here, we revisit our patient cohort to investigate the XMRV status in those patients by means of the original PCR protocol which linked the virus to CFS. In addition, sera from our CFS patients were assayed for the presence of xenotropic virus envelope protein, as well as a serological response to it. The results further strengthen our contention that there is no evidence for an association of XMRV with CFS, at least in the UK
    corecore