20 research outputs found

    A Study Using a Monte Carlo Method of the Optimal Configuration of a Distribution Network in Terms of Power Loss Sensing

    Get PDF
    Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation

    The Antibacterial Assay of Tectorigenin with Detergents or ATPase Inhibitors against Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Tectorigenin (TTR) is an O-methylated isoflavone derived from the rhizome of Belamacanda chinensis (L.) DC. It is known to perform a wide spectrum of biological activities such as antioxidant, anti-inflammatory, anti-tumor. The aim of this study is to examine the mechanism of antibacterial activity of TTR against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA activity of TTR was analyzed in combination assays with detergent, ATPase inhibitors, and peptidoglycan (PGN) derived from S. aureus. Transmission electron microscopy (TEM) was used to monitor survival characteristics and changes in S. aureus morphology. The MIC values of TTR against all the tested strains were 125 μg/mL. The OD(600) of each suspension treated with a combination of Triton X-100, DCCD, and NaN3 with TTR (1/10 × MIC) had been reduced from 68% to 80%, compared to the TTR alone. At a concentration of 125 μg/mL, PGN blocked antibacterial activity of TTR. This study indicates that anti-MRSA action of TTR is closely related to cytoplasmic membrane permeability and ABC transporter, and PGN at 125 μg/mL directly bind to and inhibit TTR at 62.5 μg/mL. These results can be important indication in study on antimicrobial activity mechanism against multidrug resistant strains

    A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment

    No full text
    One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in generation or load-shedding can be used to maintain the frequency when a power imbalance between supply and demand occurs. The power imbalance restricts the electricity use of consumers in the case of supply shortage and the power supply of suppliers in the case of supply surplus. Therefore, the islanded microgrid should be operated to reduce power imbalance conditions. Meanwhile, the microgrid is a small-scale power system and the employment of skillful operators for effective operation of its components requires high costs. Therefore, automatic operation of the components is effective realistically. In addition, the components are distributed in the microgrid and their operation should consider their owners’ profits. For these reasons, a multiagent system application can be a good alternative for microgrid operation. In this paper, we present a multiagent system for autonomous operation of the islanded microgrid on a power market environment. The proposed multiagent system is designed based on a cooperative operation scheme. We show the functionality and the feasibility of the proposed multiagent system through several tests
    corecore