9 research outputs found

    Multislice forward modeling of Coherent Surface Scattering Imaging on surface and interfacial structures

    Full text link
    To study nanostructures on substrates, surface-sensitive reflection-geometry scattering techniques such as grazing incident small angle x-ray scattering are commonly used to yield an averaged statistical structural information of the surface sample. Grazing incidence geometry can probe the absolute three-dimensional structural morphology of the sample if a highly coherent beam is used. Coherent Surface Scattering Imaging (CSSI) is a powerful yet non-invasive technique similar to Coherent X-ray Diffractive Imaging (CDI) but performed at small angles and grazing-incidence reflection geometry. A challenge with CSSI is that conventional CDI reconstruction techniques cannot be directly applied to CSSI because the Fourier-transform-based forward models cannot reproduce the dynamical scattering phenomenon near the critical angle of total external reflection of the substrate-supported samples. To overcome this challenge, we have developed a multislice forward model which can successfully simulate the dynamical or multi-beam scattering generated from surface structures and the underlying substrate. The forward model is also demonstrated to be able to reconstruct an elongated 3D pattern from a single shot scattering image in the CSSI geometry through fast-performing CUDA-assisted PyTorch optimization with automatic differentiation.Comment: 12 pages, 4 figures, 1 tabl

    Local step-flow dynamics in thin film growth with desorption

    Full text link
    Desorption of deposited species plays a role in determining the evolution of surface morphology during crystal growth when the desorption time constant is short compared to the time to diffuse to a defect site, step edge or kink. However, experiments to directly test the predictions of these effects are lacking. Novel techniques such as \emph{in-situ} coherent X-ray scattering can provide significant new information. Herein we present X-ray Photon Correlation Spectroscopy (XPCS) measurements during diindenoperylene (DIP) vapor deposition on thermally oxidized silicon surfaces. DIP forms a nearly complete two-dimensional first layer over the range of temperatures studied (40 - 120 ∘^{\circ}C), followed by mounded growth during subsequent deposition. Local step flow within mounds was observed, and we find that there was a terrace-length-dependent behavior of the step edge dynamics. This led to unstable growth with rapid roughening (β>0.5\beta>0.5) and deviation from a symmetric error-function-like height profile. At high temperatures, the grooves between the mounds tend to close up leading to nearly flat polycrystalline films. Numerical analysis based on a 1 + 1 dimensional model suggests that terrace-length dependent desorption of deposited ad-molecules is an essential cause of the step dynamics, and it influences the morphology evolution.Comment: 21 pages, 9 figures, and one tabl

    Real-time coherent X-ray studies of kinetics and dynamics in self-organized ion beam nanopatterning

    Full text link
    Real-time coherent Grazing-Incidence Small-Angle X-ray Scattering was used to investigate the average kinetics and the fluctuation dynamics during self-organized ion beam nano-patterning of two semiconductor surfaces: silicon at room temperature and germanium heated above its recrystallation temperature. For silicon nano-patterning, initially flat samples at room temperature were bombarded by a broad collimated beam of 1keV Ar+ and Kr+ ions at 65° polar angle, leading to the amorphization of the ion-irradiated surfaces and the spontaneous formation of nanoscale ripples. The temporal evolution of the average X-ray scattering intensity shows the evolution of average kinetics, while the fluctuation dynamics can be investigated by correlation of X-ray speckles. The surface behavior at early times can be explained within a linear theory framework. The transition away from the linear theory behavior is observed in the dynamics since the intensity correlation function quickly evolves into a compressed exponential decay on length scales corresponding to the peak wavelength and a stretched exponential decay on shorter length scales. The correlation times for silicon nano-patterning are maximum at the ripple wavelengths while they are smaller at other wavelengths. This has notable similarities and differences with the phenomenon of de Gennes narrowing. Overall, this dynamics behavior is found to be consistent with the simulations of a nonlinear growth model by Harrison et al. Following the formation of self-organized nano-ripples, they move across the surface. Homodyne X-ray alone cannot detect the motion, but because of the gradient of ion flux across the sample, we were able to measure in-situ the corresponding ripple velocity gradient by cross-correlating speckles and tracking their movements. For germanium nano-patterning at an elevated temperature, flat germanium samples kept at 300°C were bombarded by 1keV Ar+ ions at normal incidence. Unlike the case when surfaces are amorphizated during room temperature bombardment, the crystalline nano-pattern formation occurs mainly due to a surface instability caused by the Ehrlich-Schwoebel barrier. By using a linear theory analysis on the X-ray scattering intensities in the early times, we measured the contribution of the Ehrlich-Schwoebel barrier to the crystalline nano-patterning kinetics

    Data publication: In-situ GISAXS observation of ion-induced nanoscale pattern formation on crystalline Ge(001) in the reverse epitaxy regime

    No full text
    experimental raw data: in-situ Grazing Incidence Small Angle X-ray Scattering (GISAXS), ex-situ Atomic Force Microscopy (AFM); simulated raw data: surface topography (RIDO

    Three-dimensional Hard X-ray Ptychographic Reflectometry Imaging on Extended Mesoscopic Surface Structures

    No full text
    Many nano and quantum devices, with their sizes often spanning from millimeters down to sub-nanometer, have intricate low-dimensional, non-uniform, or hierarchical structures on surfaces and interfaces. Since their functionalities are dependent on these structures, high-resolution surface-sensitive characterization becomes imperative to gain a comprehensive understanding of the function-structure relationship. We thus developed hard X-ray ptychographic reflectometry imaging, a new technique that merges the high-resolution two-dimensional imaging capabilities of hard X-ray ptychography for extended objects, with the high-resolution depth profiling capabilities of X-ray reflectivity for layered structures. The synergy of these two methods fully leverages both amplitude and phase information from ptychography reconstruction to not only reveal surface topography and localized structures such as shapes and electron densities, but also yields statistical details such as interfacial roughness that is not readily accessible through coherent imaging solely. The hard X-ray ptychographic reflectometry imaging is well-suited for three-dimensional imaging of mesoscopic samples, particularly those comprising planar or layered nanostructures on opaque supports, and could also offer a high-resolution surface metrology and defect analysis on semiconductor devices such as integrated nanocircuits and lithographic photomasks for microchip fabrications
    corecore