27,972 research outputs found
Towards an Improved Test of the Standard Model's Most Precise Prediction
The electron and positron magnetic moments are the most precise prediction of
the standard model of particle physics. The most accurate measurement of a
property of an elementary particle has been made to test this result. A new
experimental method is now being employed in an attempt to improve the
measurement accuracy by an order of magnitude. Positrons from a "student
source" now suffice for the experiment. Progress toward a new measurement is
summarized
signals at LEP2 energies in the Minimal Supersymmetric Standard Model
In this paper we compare and into four-fermion production
at centre-of-mass energies typical of LEP2 and somewhat larger. The theoretical
framework considered is the Minimal Supersymmetric Standard Model. The interest
in exploiting the CERN collider at values of greater than
192 GeV could come from the discovery of Supersymmetric signals during runs at
lower energy. If these indicate that a charged Higgs boson exists in the mass
range \MH\approx95-105 GeV, then a few years of running at
GeV and nominal luminosity could make the detection of such scalars feasible,
in the purely leptonic channel and, for small
\tb's, also in the semi-hadronic(leptonic) one . Charged
Higgs bosons of the above nature cannot be produced by the beam energies
approved at present for LEP2. However, if runs beyond the so-called `192 GeV
cryogenic limit' will be approved by the CERN Council, our selection procedure
will enable us to establish the presence, or otherwise, of charged Higgs bosons
in the mentioned mass rangeComment: 30 pages, latex, epsfig, 12 postscript figures, complete paper
available at ftp://axpa.hep.phy.cam.ac.uk/stefano/cavendish_9615 and at
http://www.hep.phy.cam.ac.uk/theory/papers
Thoracic Pressure Does Not Impact CSF Pressure via Compartment Compliance
Space acquired neuro-ocular syndrome (SANS) remains a difficult risk to characterize due to the complex multi-factorial etiology related to physiological responses to the spaceflight environment. Fluid shift and the resultant change on the Cardiovascular (CV) and cerebral spinal fluid systems (CSF) in the absence of gravity continue to be considered a contributing factor to the progression of SANS. In this study, we utilize a computational model of the CSF and CV interface to establish the sensitivity that intracranial pressure, and subsequently the optic nerve sheath pressure, exhibits due to variations in thoracic pressure, assuming the cranial perfusion pressure, i.e. mean arterial pressure (MAP) to central venous pressure (CVP), is known. Methods: The GRC Cross cutting computational modeling project created as model of the CSF and CV interaction within the cranial vault by extending the work of Stevens et al. [1] by modifying the representative anatomy to include a separate venous sinus, jugular veins, secondary veins and extra jugular pathways [2-3] to more adequately represent the vascular drainage pathways from the cranial vault (Figure 1). Assuming the MAP, CVP and thoracic pressure are known, we initiated this enhanced computational model assuming a supine positon and utilized a linear ramp to vary the thoracic pressure from the assumed supine state to the target pressure corresponding to set MAP and CVP values. The model generates the time based CSF pressure values (Figure2). Results and Conclusions: Following this analysis, CSF pressure shows significant independence from thoracic pressure changes (16 mmHg in thoracic pressure produces < 1mmHg change in CSF pressure), being mostly dependent on perfusion pressure. Similarly fluid redistribution is not predicted to be impacted over a level of 1mL. We note that this simulation represents an acute changes (order of 10's of minutes) and does not represent the long term effects
Development of computer software to analyze entire LANDSAT scenes and to summarize classification results of variable-size polygons
The Forest Pest Management Division (FPMD) of the Pennsylvania Bureau of Forestry has the responsibility for conducting annual surveys of the State's forest lands to accurately detect, map, and appraise forest insect infestations. A standardized, timely, and cost-effective method of accurately surveying forests and their condition should enhance the probability of suppressing infestations. The repetitive and synoptic coverage provided by LANDSAT (formerly ERTS) makes such satellite-derived data potentially attractive as a survey medium for monitoring forest insect damage over large areas. Forest Pest Management Division personnel have expressed keen interest in LANDSAT data and have informally cooperated with NASA/Goddard Space Flight Center (GSFC) since 1976 in the development of techniques to facilitate their use. The results of this work indicate that it may be feasible to use LANDSAT digital data to conduct annual surveys of insect defoliation of hardwood forests
Black Holes with a Generalized Gravitational Action
Microscopic black holes are sensitive to higher dimension operators in the
gravitational action. We compute the influence of these operators on the
Schwarzschild solution using perturbation theory. All (time reversal invariant)
operators of dimension six are included (dimension four operators don't alter
the Schwarzschild solution). Corrections to the relation between the Hawking
temperature and the black hole mass are found. The entropy is calculated using
the Gibbons-Hawking prescription for the Euclidean path integral and using
naive thermodynamic reasoning. These two methods agree, however, the entropy is
not equal to 1/4 the area of the horizon.Comment: plain tex(uses phyzzx.tex), 8 pages, CALT-68-185
Clustering on very small scales from a large sample of confirmed quasar pairs: Does quasar clustering track from Mpc to kpc scales?
We present the most precise estimate to date of the clustering of quasars on
very small scales, based on a sample of 47 binary quasars with magnitudes of
and proper transverse separations of \,kpc. Our
sample of binary quasars, which is about 6 times larger than any previous
spectroscopically confirmed sample on these scales, is targeted using a Kernel
Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS)
imaging over most of the SDSS area. Our sample is "complete" in that all of the
KDE target pairs with \,kpc in our area
of interest have been spectroscopically confirmed from a combination of
previous surveys and our own long-slit observational campaign. We catalogue 230
candidate quasar pairs with angular separations of <8\arcsec, from which our
binary quasars were identified. We determine the projected correlation function
of quasars () in four bins of proper transverse scale over the
range \,kpc. The implied small-scale
quasar clustering amplitude from the projected correlation function, integrated
across our entire redshift range, is at \,kpc. Our sample is the first spectroscopically confirmed sample of
quasar pairs that is sufficiently large to study how quasar clustering evolves
with redshift at kpc. We find that empirical descriptions of
how quasar clustering evolves with redshift at Mpc also
adequately describe the evolution of quasar clustering at
kpc.Comment: 16 pages, 8 figures, 6 tables, Accepted for publication in MNRA
Use of ERTS data for a multidisciplinary analysis of Michigan resources
There are no author-identified significant results in this report
X-ray Properties of Radio-Selected Dual Active Galactic Nuclei
Merger simulations predict that tidally induced gas inflows can trigger
kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments.
Previously with the Very Large Array, we have confirmed four dAGN with
redshifts between and projected separations between 4.3 and
9.2 kpc in the SDSS Stripe 82 field. Here, we present X-ray
observations that spatially resolve these dAGN and compare their
multi-wavelength properties to those of single AGN from the literature. We
detect X-ray emission from six of the individual merger components and obtain
upper limits for the remaining two. Combined with previous radio and optical
observations, we find that our dAGN have properties similar to nearby
low-luminosity AGN, and they agree well with the black hole fundamental plane
relation. There are three AGN-dominated X-ray sources, whose X-ray
hardness-ratio derived column densities show that two are unobscured and one is
obscured. The low obscured fraction suggests these dAGN are no more obscured
than single AGN, in contrast to the predictions from simulations. These three
sources show an apparent X-ray deficit compared to their mid-infrared continuum
and optical [OIII] line luminosities, suggesting higher levels of obscuration,
in tension with the hardness-ratio derived column densities. Enhanced
mid-infrared and [OIII] luminosities from star formation may explain this
deficit. There is ambiguity in the level of obscuration for the remaining five
components since their hardness ratios may be affected by non-nuclear X-ray
emissions, or are undetected altogether. They require further observations to
be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical
Journa
Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and atomic number (Z) reconstructions to a significant extent.S.J.L., G.R.M., and A.M.K. acknowledge funding through the
DigiCore consortium and the support of a linkage grant
(LP150101040) from the Australian Research Council and
FEI Company
- …