21 research outputs found

    Rasgrp1 mutation increases naΓ―ve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies

    No full text
    Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1Anaef, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1Anaef mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios+ PD-1+ CD4+ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1Anaef is mostly normal in vivo, although CD44 is overexpressed on naΓ―ve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1Anaef naΓ―ve CD4+ T cells. CD44 expression, CD4+ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1AnaefMtorchino double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1Anaef T cell dysregulation

    Rasgrp1 mutation increases naïve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios⁺ T cells and autoantibodies

    Get PDF
    Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1ᴬⁿᡃᡉᢠ, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1ᴬⁿᡃᡉᢠ mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios⁺ PD-1⁺ CD4⁺ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1ᴬⁿᡃᡉᢠ is mostly normal in vivo, although CD44 is overexpressed on naΓ―ve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1ᴬⁿᡃᡉᢠ naΓ―ve CD4⁺ T cells. CD44 expression, CD4⁺ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1ᴬⁿᡃᡉᢠMtorαΆœΚ°β±βΏα΅’ double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1ᴬⁿᡃᡉᢠ T cell dysregulation

    Rasgrp1 mutation increases naΓ―ve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies

    Get PDF
    Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1(Anaef), with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1(Anaef) mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44(hi) Helios(+) PD-1(+) CD4(+) T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1(Anaef) is mostly normal in vivo, although CD44 is overexpressed on naΓ―ve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1(Anaef) naΓ―ve CD4(+) T cells. CD44 expression, CD4(+) T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1(Anaef)Mtor(chino) double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1(Anaef) T cell dysregulation. DOI: http://dx.doi.org/10.7554/eLife.01020.00

    Tonic Signals: Why Do Lymphocytes Bother?

    No full text
    corecore