55 research outputs found

    Elastic wave propagation along a set of parallel fractures

    Get PDF
    Abstract. Previous studies on elastic wave propagation in fractured media have demonstrated that a single planar fracture supports fracture interface waves and that two plane parallel fractures support fracture channel waves. Here, the results are presented for plane wave propagation through an infinite number of plane parallel fractures with equal fracture spacing and fracture stiffnesses. Analysis of the dispersion equations for this fractured system demonstrates that these waves exhibit symmetric and antisymmetric particle motions, degenerate to classical Rayleigh-Lamb plate waves when the fractures are completely open, and possess dispersive velocities that are functions of both the fracture stiffness and spacing. Time-frequency analysis performed on a series of laboratory ultrasonic transmission measurements on a fractured rock analog shows good agreement with the theoretical predictions

    Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    Get PDF
    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation

    A Strategy for Monitoring of Geologic Sequestration of CO2

    No full text
    Monitoring of geologic sequestration projects will require the measurement of many different parameters and processes at many different locations at the surface and in the subsurface. The greatest need for technology development is for monitoring of processes in the subsurface in the region between wells. The approach to fitting this need is to build upon decades of experience in use of geophysics in the oil and gas industry. These methods can be optimized for CO2 monitoring, and customized and extended in order to meet the need for cost-effective methods applicable to saline disposal sites, coal bed methane sites, as well as oil and gas reservoir sequestration sites. The strategy for development of cost-effective methods follows a three step iterative process of sensitivity analysis using numerical and experimental techniques, field testing at a range of scale in different formations, and analysis and integration of complimentary types of data

    Geomechanical risks in coal bed carbon dioxide sequestration

    No full text
    The purpose of this report is to summarize and evaluate geomechanical factors which should be taken into account in assessing the risk of leakage of CO{sub 2} from coal bed sequestration projects. The various steps in developing such a project will generate stresses and displacements in the coal seam and the adjacent overburden. The question is whether these stresses and displacements will generate new leakage pathways by failure of the rock or slip on pre-existing discontinuities such as fractures and faults. In order to evaluate the geomechanical issues in CO{sub 2} sequestration in coal beds, it is necessary to review each step in the process of development of such a project and evaluate its geomechanical impact. A coal bed methane production/CO{sub 2} sequestration project will be developed in four steps: (1) Formation dewatering and methane production; (2) CO{sub 2} injection with accompanying methane production; (3) Possible CO{sub 2} injection for sequestration only; and The approach taken in this study was to review each step: Identify the geomechanical processes associated with it, and assess the risks that leakage would result from these processes
    • …
    corecore