8 research outputs found

    Comparison between a novel core knife and the conventional IT knife 2 for endoscopic submucosal dissection of gastric mucosal lesions

    Get PDF
    Background/Aims Few studies have compared the performances of endoscopic knives. This study aimed to compare the therapeutic outcomes of a novel core knife and the conventional IT knife 2 for endoscopic submucosal dissection (ESD) of gastric mucosal lesions. Methods This prospective, non-inferiority trial included patients diagnosed with gastric adenoma or early-stage adenocarcinoma at Keimyung University Dongsan Hospital between June and November 2020. The patients were randomly assigned to either the core knife or the IT knife 2 group. The operators and assistants scored the knives’ grip convenience and cutting abilities. Results A total of 39 patients were enrolled (core knife group, 20 patients; IT knife 2 group, 19 patients). There were no significant between-group differences in operator-assessed grip convenience (9.600 vs. 9.526, p=0.753), cutting ability (9.600 vs. 9.105, p=0.158), or assistant-assessed grip convenience (9.500 vs. 9.368, p=0.574). Conclusions The core knife achieved therapeutic outcomes that were comparable to those of the IT knife 2 for ESD of gastric mucosal lesions

    Fabrication of Uniform Au–Carbon Nanofiber by Two-Step Low Temperature Decomposition

    Get PDF
    This paper presents a facile and efficient way to prepare carbon nanofibers ornamented with Au nanoparticles (Au/CNFs). Gold nanoparticles were first deposited in the channels of an anodized aluminum oxide (AAO) membrane by thermal decomposition of HAuCl4and then carbon nanofibers were produced in the same channels loaded with the Au nanoparticles by decomposition of sucrose at 230 °C. An electron microscopy study revealed that the carbon nanofibers, ~10 nm thick and 6 μm long, were decorated with Au nanoparticles with a diameter of 10 nm. This synthetic route can produce uniform Au nanoparticles on CNF surfaces without using any additional chemicals to modify the AAO channels or the CNF surfaces

    Well-Defined Au/ZnO Nanoparticle Composites Exhibiting Enhanced Photocatalytic Activities

    No full text
    Well-defined Au/ZnO nanoparticle composites were prepared by modifying ZnO with preformed Au nanoparticles protected with bifunctional glutathione ligand. In this approach, the Au nanoparticles were highly monodisperse and their loading on ZnO surface could be precisely controlled by the anchoring conditions. Steady-state and time-resolved photoluminescence of the composites revealed the ability of the Au nanoparticles to efficiently extract conduction band electrons from the photoexcited ZnO. The composites exhibited strongly enhanced photocatalytic activity without requiring thermal activation process in degrading organic substrates in both oxidative and reductive pathways. A clear correlation between the photocatalytic activity and the Au loading was found for both oxidative and reductive photocatalytic reactions. These results demonstrate that thiolate-protected AuNPs can significantly enhance the charge separation by extracting electrons from the photoexcited ZnO and consequently improve the photocatalytic activity of the composites

    Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO–Au Nanoparticle Composites

    No full text
    This Letter describes size-controlled photocatalytic activity of ZnO nanoparticles coated with glutathione-protected gold nanoparticles with diameters of 1.1, 1.6, and 2.8 nm. The photocatalytic activity of the ZnO–Au composites was found to increase with increasing gold size for both oxidative and reductive catalytic reactions. Photoluminescence decay dynamics of the composites showed that the electron-transfer rate from the photoexcited ZnO to gold nanoparticle also increased as the gold size increased. These results demonstrate that the photogenerated electron transfer and the resulting catalytic activity of the composites can be controlled by the size of the mediating gold capacitors
    corecore