50 research outputs found

    Task preparation and task repetition: Two-component model of task switching

    No full text
    The switch cost (the disadvantage of performing a new task vs. a repeated task) has been attributed to lack of preparation for the switched task or priming of the repeated task. These sources were examined by manipulating foreknowledge of task transition (repeat or switch), response-to-stimulus interval (RSI), and practice level. Regardless of foreknowledge, the cost decreased with RSI and practice. The reduction was greater with foreknowledge than with no foreknowledge, and the amount of switch cost did not depend on foreknowledge. These results suggest that the switch cost with foreknowledge may consist of both inadequate preparation and repetition benefit but the switch cost with no foreknowledge may reflect repetition benefit only. An ACT-R (adaptive control of thought-rational) model was proposed, accommodating both preparation and priming effect with 2 independent processes: conflict resolution among productions and decay of chunk activation

    Stimulus-related priming during task switching

    No full text
    Task switch cost (the deficit of performing a new task vs. a repeated task) has been partly attributed to priming of the repeated task, as well as to inappropriate preparation for the switched task. In the present study, we examined the nature of the priming effect by repeating stimulus-related processes, such as stimulus encoding or stimulus identification. We adopted a partial-overlap task-switching paradigm, in which only stimulus-related processes should be repeated or switched. The switch cost in this partial-overlap condition was smaller than the cost in the full-overlap condition, in which the task overlap involved more than stimulus processing, indicating that priming of a stimulus is a component of a switch cost. The switch cost in the partial-overlap condition, however, disappeared eventually with a long interval between two tasks, whereas the cost in the full-overlap condition remained significant. Moreover, the switch cost, in general, did not interact with foreknowledge, suggesting that preparation on the basis of foreknowledge may be related to processes beyond stimulus encoding. These results suggest that stimulus-related priming is automatic and short-lived and, therefore, is not a part of the persisting portion of switch cost.</p
    corecore