12 research outputs found
A Yellow Fever 17D virus replicon-based vaccine platform for emerging Coronaviruses
The tremendous global impact of the current SARS-CoV-2 pandemic, as well as other current and recent outbreaks of (re)emerging viruses, emphasize the need for fast-track development of effective vaccines. Yellow fever virus 17D (YF17D) is a live-attenuated virus vaccine with an impressive efficacy record in humans, and therefore, it is a very attractive platform for the development of novel chimeric vaccines against various pathogens. In the present study, we generated a YF17D-based replicon vaccine platform by replacing the prM and E surface proteins of YF17D with antigenic subdomains from the spike (S) proteins of three different betacoronaviruses: MERS-CoV, SARS-CoV and MHV. The prM and E proteins were provided in trans for the packaging of these RNA replicons into single-round infectious particles capable of expressing coronavirus antigens in infected cells. YF17D replicon particles expressing the S1 regions of the MERS-CoV and SARS-CoV spike proteins were immunogenic in mice and elicited (neutralizing) antibody responses against both the YF17D vector and the coronavirus inserts. Thus, YF17D replicon-based vaccines, and their potential DNA- or mRNA-based derivatives, may constitute a promising and particularly safe vaccine platform for current and future emerging coronaviruses.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
Detailed immune monitoring of a pregnant woman with critical Covid-19
A primigravid woman with Covid-19 related respiratory insufficiency was admitted into a tertiary Intensive Care Unit at 23 3/7 weeks' gestation. Highly sensitive flow cytometry of peripheral leukocytes indicated significantly suppressed naive T- and B-cell compartments. The suppressed immune cell responses led us keep the initially started administration of corticosteroids for fetal and maternal indication at a low dose. After three weeks her B-cell response peaked, SARS-CoV-2 was cleared and clinical improvement ensued a week later. At 28 weeks' gestation, a son of 1570 g was born by cesarean section. She was extubated two days postpartum and discharged from hospital 5.5 weeks postpartum.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
Engineering potent live attenuated coronavirus vaccines by targeted inactivation of the immune evasive viral deubiquitinase
Coronaviruses express a papain-like protease (PLpro) that is required for replicase polyprotein maturation and also serves as a deubiquitinating enzyme (DUB). In this study, using a Middle East respiratory syndrome virus (MERS-CoV) PLpro modified virus in which the DUB is selectively inactivated, we show that the PLpro DUB is an important MERS-CoV interferon antagonist and virulence factor. Although the DUB-negative rMERS-CoVMA replicates robustly in the lungs of human dipeptidyl peptidase 4 knock-in (hDPP4 KI) mice, it does not cause clinical symptoms. Interestingly, a single intranasal vaccination with DUB-negative rMERS-CoVMA induces strong and sustained neutralizing antibody responses and sterilizing immunity after a lethal wt virus challenge. The survival of naive animals also significantly increases when sera from animals vaccinated with the DUB-negative rMERS-CoVMA are passively transferred, prior to receiving a lethal virus dose. These data demonstrate that DUB-negative coronaviruses could be the basis of effective modified live attenuated vaccines.In this work, authors provide a proof-of-concept study showing that deubiquitinating enzyme inactivation in MERS-CoV leads to attenuation in mice, and protection against a lethal challenge.Horizon 2020 (H2020)952373Molecular basis of virus replication, viral pathogenesis and antiviral strategie
Humoral response to SARS-CoV-2 infection among liver transplant recipients
Objective Immunosuppressive agents are known to interfere with T and/or B lymphocytes, which are required to mount an adequate serologic response. Therefore, we aim to investigate the antibody response to SARS-CoV-2 in liver transplant (LT) recipients after COVID-19. Design Prospective multicentre case-control study, analysing antibodies against the nucleocapsid protein, spike (S) protein of SARS-CoV-2 and their neutralising activity in LT recipients with confirmed SARS-CoV-2 infection (COVID-19-LT) compared with immunocompetent patients (COVID-19-immunocompetent) and LT recipients without COVID-19 symptoms (non-COVID-19-LT). Results Overall, 35 LT recipients were included in the COVID-19-LT cohort. 35 and 70 subjects fulfilling the matching criteria were assigned to the COVID-19-immunocompetent and non-COVID-19-LT cohorts, respectively. We showed that LT recipients, despite immunosuppression and less symptoms, mounted a detectable antinucleocapsid antibody titre in 80% of the cases, although significantly lower compared with the COVID-19-immunocompetent cohort (3.73 vs 7.36 index level, p<0.001). When analysing anti-S antibody response, no difference in positivity rate was found between the COVID-19-LT and COVID-19-immunocompetent cohorts (97.1% vs 100%, p=0.314). Functional antibody testing showed neutralising activity in 82.9% of LT recipients (vs 100% in COVID-19-immunocompetent cohort, p=0.024). Conclusions Our findings suggest that the humoral response of LT recipients is only slightly lower than expected, compared with COVID-19 immunocompetent controls. Testing for anti-S antibodies alone can lead to an overestimation of the neutralising ability in LT recipients. Altogether, routine antibody testing against separate SARS-CoV-2 antigens and functional testing show that the far majority of LT patients are capable of mounting an adequate antibody response with neutralising ability.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses
Development of effective preventative interventions against SARS-CoV-2, the etiologic agent of COVID-19 is urgently needed. The viral surface spike (S) protein of SARS-CoV-2 is a key target for prophylactic measures as it is critical for the viral replication cycle and the primary target of neutralizing antibodies. We evaluated design elements previously shown for other coronavirus S protein-based vaccines to be successful, e.g., prefusion-stabilizing substitutions and heterologous signal peptides, for selection of a S-based SARS-CoV-2 vaccine candidate. In vitro characterization demonstrated that the introduction of stabilizing substitutions (i.e., furin cleavage site mutations and two consecutive prolines in the hinge region of S2) increased the ratio of neutralizing versus non-neutralizing antibody binding, suggestive for a prefusion conformation of the S protein. Furthermore, the wild-type signal peptide was best suited for the correct cleavage needed for a natively folded protein. These observations translated into superior immunogenicity in mice where the Ad26 vector encoding for a membrane-bound stabilized S protein with a wild-type signal peptide elicited potent neutralizing humoral immunity and cellular immunity that was polarized towards Th1 IFN-gamma. This optimized Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04436276).Molecular basis of virus replication, viral pathogenesis and antiviral strategie
Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8(+) T cell responses following COVID-19
Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates(1-6). Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c(+) natural killer (NK) cells and CD4(+) T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38(+)PD1(+)CD4(+) T effector (T-eff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127(+) granulocytes and CD38(+)CD8(+) tissue-resident memory T cells (T-RM). SARS-CoV-2-specific CD8(+) T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity
The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP
Safe and effective coronavirus disease-19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one-and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1-skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
Deubiquitinating activity of SARS-CoV-2 papain-like protease does not influence virus replication or innate immune responses in vivo
The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
A third vaccination with a single T cell epitope confers protection in a murine model of SARS-CoV-2 infection
Vaccination regimens and the number of doses required for optimal immunity and protection are critical factors in the translation of vaccines. Here the authors show administration of a three dose protocol of a single T cell epitope to the SARS-CoV-2 spike protein induces a robust CD8(+) T cell response and confers protection in a lethal murine challenge model of infection.Understanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8(+) T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection. The third vaccine dose of the single T cell epitope peptide results in superior generation of effector-memory T cells and tissue-resident memory T cells, and these tertiary vaccine-specific CD8(+) T cells are characterized by enhanced polyfunctional cytokine production. Moreover, fate mapping shows that a substantial fraction of the tertiary CD8(+) effector-memory T cells develop from re-migrated tissue-resident memory T cells. Thus, repeated booster vaccinations quantitatively and qualitatively improve the CD8(+) T cell response leading to protection against otherwise lethal SARS-CoV-2 infection.Molecular basis of virus replication, viral pathogenesis and antiviral strategie