27 research outputs found

    The Challenges of Psychological Adjustment for International Students: A Critical Analysis of Coping Mechanisms and Support Services

    Get PDF
    This paper critically analyzes the challenges of psychological adjustment faced by international students and explores coping mechanisms and support services that can help them overcome these challenges. The essay first introduces the background information on international students and highlights the importance of psychological adjustment for their well-being and academic success. The challenges of psychological adjustment, including cultural, academic, social adjustment, and language barrier, are discussed in detail. The essay then explores coping mechanisms, including problem-focused coping, emotion-focused coping, seeking social support, and cultural adjustment programs, and the support services, including counseling services and international student services, that can help international students adjust to their new environment. Finally, the essay evaluates the effectiveness of these coping mechanisms and support services, emphasizing the importance of cultural competence in providing effective support services. This essay has practical implications for higher education institutions in providing tailored support to international students and highlights the need for future research to explore the effectiveness of coping mechanisms and support services for different groups of international students and the impact of the COVID-19 pandemic on their psychological adjustment

    The Effect of Social Isolation on the Mental Health of International Students

    Get PDF
    This paper looks into how social isolation affects international college students mental health. An increase in international students studying at colleges and universities abroad can be attributed to increased global mobility over the previous few decades. Because of this, these students struggle in certain ways to fit into their new academic and social surroundings. Among these difficulties, social isolation among overseas students has been recognized as a major issue. This essay will investigate how social isolation affects the mental health of international college students by drawing on existing studies. The various types of social isolation will be covered in the essay along with how they may affect mental health. It will also be looked at whether factors like linguistic difficulties, cultural shock, prejudice, and discrimination contribute to social isolation among overseas students. In light of the hazards to mental health posed by social isolation among international students, this presentation will offer some potential solutions. The findings of the inquiry will be utilized to create solutions that can assist overseas students in reducing the detrimental impacts of social isolation on their mental health. Compared to other groups, college students’ mental health has not been adequately researched, even though social isolation can be an emotionally and mentally damaging experience. The paper will focus on the various mental health impacts that international college students experience such as depression, anxiety, and long-term psychological harm. An analysis of existing literature on the topic, interviews with international college students, and the mental health resources available to this population are also discussed. The main findings of the research show that international college students living in a foreign country experience significant levels of social isolation due to language barriers and cultural differences

    Sustainable lightweight foamed concrete using hemp fibre for mechanical properties improvement

    Get PDF
    Fibres have long been used as an additive in the fabrication of building elements and materials. A combination of natural and synthetic fibres has shown promise in preliminary research and testing, with the added benefit of greatly improved strengths of the composites. Compared to traditional reinforcement bars, natural fibre reinforcement's ratio of fibre required is significantly lower, making it more beneficial in terms of energy and economic values. Recent research has focused on the feasibility of using both natural and synthetic fibres as reinforcement in concrete and other construction materials. Thus, the purpose of this research is to investigate the feasibility of using hemp fibre at various percentages (0%, 0.2%, 0.4%, 0.6%, and 0.8%) as an additive in lightweight foamed concrete to enhance mechanical properties. Three LFC densities namely 500, 900 and 1300 kg/m3 were fabricated and tested. Axial compressive strength, flexural strength, splitting tensile strength, and ultrasonic pulse velocity were the four mechanical parameters that were assessed. The findings demonstrated that adding 0.4-0.6% of HF to LFC produced the best results for ultrasonic pulse velocity, compressive strength, flexural strength, and splitting tensile strength. The HF is essential in assisting to stop the spread of cracks in the plastic state of the cement matrix after the load was applied

    Studies on durability properties of natural fibre-reinforced green lightweight foamed concrete employing industrial hemp fibres

    Get PDF
    The utilization of natural fibres for the invention of building materials has increased significantly in recent years in the construction industry. Hemp fibre-reinforced concrete, according to research, can provide low-cost building materials for residential and low-rise buildings while achieving sustainable construction and meeting future environmental targets. The purpose of this research was to improve the durability of lightweight foamed concrete (LFC) reinforced with hemp fibre (HF). Six weight fractions of HF were considered specifically 0.0% (control), 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Besides, three densities of LFC which were 500, 900 and 1300 kg/m3 were cast and tested. The properties evaluated were drying shrinkage, water absorption, depth of carbonation and porosity. From the durability tests, it was observed that the optimal results for water absorption, depth of carbonation and porosity tests were attained with the addition of 0.5% HF into LFC mixes. For the drying shrinkage test, LFC with the weight fractions of 0.3% (500 kg/m3), 0.4% (900 kg/m3) and 0.5% (1300 kg/m3) reveal the optimal drying shrinkage. This research has provided a foundation for further research into HF-strengthening LFC. There is a huge potential to utilize HF in cement�based materials for durability and mechanical properties enhancement. The use of industrial HF might make it possible to reduce fine aggregate while still producing LFC of higher quality. The inclusion of agricultural fibres in LFC will also promote the expansion of farming operations, which will have rewarding economic benefits

    Influence of Crisscross Fiberglass Strip on Axial Compressive Strength of Lightweight Foamed Concrete

    Get PDF
    Concrete use as a building component is already associated with the global construction sector. Since extensive research on concrete has been conducted for many years, there is a growing interest among researchers to conduct studies to increase the capacity of concrete for use in the building sector. Lightweight foamed concrete is one of the cutting-edge solutions developed for lighter and more sustainable buildings. Although this type of concrete has several benefits, its strength is still viewed as being inferior to that of regular concrete. By limiting the LFC with a crisscross fiberglass strip, the authors of this work will demonstrate improvements in LFC behaviour in terms of its compressive strength (CFS). To examine its improvements, 3 different LFC densities were cast and contained with 1 to 3 layers of 160 g/m2 CFS. For this test, the cement-to-sand ratio was fixed at 1.1:5, and the water content was set at 0.45. The results revealed that the compressive strength of LFC confined with 1 to 3 layers of CFS increased by 153%, 97% and 102% were acquired for 600, 1100 and 1600 kg/m3 densities respectively. This demonstrates that the number of layers used affects how positively the confinement of CFS affects the compressive behaviour of LFC

    Durability Properties of Lightweight Foamed Concrete Reinforced With ‘Musa Acuminate’ Fibre

    Get PDF
    The demand for lightweight building materials that are easy to work with, self-compacting, and environmentally friendly has been acknowledged by the construction industry globally. Given this demand, it has been discovered that a recent innovative material, lightweight foamed concrete (LFC), may be able to reduce the weight of ordinary concrete. Besides, utilizing LFC with the addition of natural fibres is seen as a great effort to assist sustainability. Corrosion of reinforcing steel, which affects the behaviour and longevity of concrete buildings, is one of the most significant challenges in the construction of reinforced LFC. Therefore, the focus of this work is on identifying the possible application of Musa Acuminate fibre (MAF) in LFC. The intention of this study is to ascertain the durability characteristics of LFC with MAF. The cast has a low density of 550 kg/m3. We'll employ several volume fractions of MAF that are 0.15%, 0.30%, 0.45%, and 0.60%. The ability to absorb water, porosity, drying shrinkage and ultrasonic pulse velocity are the four criteria that will be evaluated. For the purpose of creating the necessary density of LFC, the protein-based foaming agent Noraite PA-1 was used. A constant water-to-cement ratio of 0.45 and a constant cement-to-sand ratio of 1.5 were used to get comparable results. The findings showed that for all of the durability attributes taken into account in this research, an increase of 0.45% MAF produced the best results. This resulted from the MAF and LFC cementitious composite's better bonding performance. Additionally, the fibres served as an anti- micro crack, preventing LFC cracks

    Durability Properties of Lightweight Foamed Concrete Reinforced With ‘Musa Acuminate’ Fibre

    Get PDF
    The demand for lightweight building materials that are easy to work with, self compacting, and environmentally friendly has been acknowledged by the construction industry globally. Given this demand, it has been discovered that a recent innovative material, lightweight foamed concrete (LFC), may be able to reduce the weight of ordinary concrete. Besides, utilizing LFC with the addition of natural fibres is seen as a great effort to assist sustainability. Corrosion of reinforcing steel, which affects the behaviour and longevity of concrete buildings, is one of the most significant challenges in the construction of reinforced LFC. Therefore, the focus of this work is on identifying the possible application of Musa Acuminate fibre (MAF) in LFC. The intention of this study is to ascertain the durability characteristics of LFC with MAF. The cast has a low density of 550 kg/m3. We'll employ several volume fractions of MAF that are 0.15%, 0.30%, 0.45%, and 0.60%. The ability to absorb water, porosity, drying shrinkage and ultrasonic pulse velocity are the four criteria that will be evaluated. For the purpose of creating the necessary density of LFC, the protein-based foaming agent Noraite PA-1 was used. A constant water-to-cement ratio of 0.45 and a constant cement-to-sand ratio of 1.5 were used to get comparable results. The findings showed that for all of the durability attributes taken into account in this research, an increase of 0.45% MAF produced the best results. This resulted from the MAF and LFC cementitious composite's better bonding performance. Additionally, the fibres served as an anti micro crack, preventing LFC crack

    Potential of natural rubber latex in cement mortar for thermal insulating material in buildings

    Get PDF
    The improvement of cement mortar’s thermal and mechanical properties has been greatly impacted by the addition of polymeric materials. However, polymers added to mortar shouldn’t impair either its mechanical or thermal conductivity properties. The main idea of this project is to insulate buildings by reinforcing their constituent mix with natural rubber latex (NRL) to reduce thermal conductance from excessive solar radiation which causes discomfort to building occupants. Consequently, this study presents experimental findings on the influence of natural rubber latex (NRL) on the properties of NRL-modified mortar. Five varying percentages of NRL (0.5%, 1.0%, 1.5%, 2.0% and 2.5%) were added into the mortar. Properties such as thermal conductivity, water absorption capacity, compressive and flexural strengths were evaluated. In addition, scanning electron microscopy was employed for the microstructural investigation. The experimental findings demonstrated that adding 2.5% NRL to mortar increased its thermal conductivity of mortar significantly thus enhancing its insulative properties. Even though adding NRL to mortar decreased the compressive and flexural strengths of some mixes, this wasn’t too substantial nor substandard. The tests that were executed demonstrate that the NRL has a huge potential to insulate cement mortar

    Extensively drug-resistant Acinetobacter baumannii in a Thai hospital: a molecular epidemiologic analysis and identification of bactericidal Polymyxin B-based combinations

    Get PDF
    BACKGROUND: Limited knowledge of the local molecular epidemiology and the paucity of new effective antibiotics has resulted in an immense challenge in the control and treatment of extensively drug-resistant (XDR) Acinetobacter baumannii infections in Thailand. Antimicrobial combination regimens may be the only feasible treatment option in such cases. We sought to characterize the local molecular epidemiology and assess the bactericidal activity of various antibiotics individually and in combination against XDR A. baumannii in a Thai hospital. METHODS: All XDR A. baumannii isolates from Thammasat University Hospital were collected between October 2010 and May 2011. Susceptibility testing was conducted according to reference broth dilution methods. Pulse-field gel electrophoresis was used to genotype the isolates. Carbapenemase genes were detected using polymerase chain reaction. In vitro testing of clinically-relevant concentrations of imipenem, meropenem, doripenem, rifampicin and tigecycline alone and in combination with polymyxin B was conducted using multiple combination bactericidal testing. RESULTS: Forty-nine polymyxin B-susceptible XDR A. baumannii isolates were identified. bla(OXA-23) and bla(OXA-51) genes were detected in all isolates. Eight clonally related clusters were identified, resulting in the initiation of several infection control measures. Imipenem, meropenem, doripenem, rifampicin, and tigecycline in combination with PB respectively, exhibited bactericidal killing in 100%, 100%, 98.0%, 100% and 87.8% isolates respectively at 24 hours. CONCLUSION: Molecular epidemiologic analysis can aid the early detection of infection outbreak within the institution, resulting in the rapid containment of the outbreak. Imipenem/meropenem/rifampicin in combination with polymyxin B demonstrated consistent bactericidal effect against 49 bla(OXA-23)-harbouring XDR A. baumannii clinical isolates, suggesting a role of combination therapy in the treatment of these infections

    THE PROPERTY INVESTMENT DECISION : A CASE STUDY OF A PRIVATE HOSPITAL

    No full text
    Bachelor'sBACHELOR OF SCIENCE (BUILDING
    corecore