48 research outputs found

    Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases

    Get PDF
    Low-density lipoprotein (LDL) plays a key role in the development and progression of atherosclerosis and cardiovascular disease. LDL consists of several subclasses of particles with different sizes and densities, including large buoyant (lb) and intermediate and small dense (sd) LDLs. It has been well documented that sdLDL has a greater atherogenic potential than that of other LDL subfractions and that sdLDL cholesterol (sdLDL-C) proportion is a better marker for prediction of cardiovascular disease than that of total LDL-C. Circulating sdLDL readily undergoes multiple atherogenic modifications in blood plasma, such as desialylation, glycation, and oxidation, that further increase its atherogenicity. Modified sdLDL is a potent inductor of inflammatory processes associated with cardiovascular disease. Several laboratory methods have been developed for separation of LDL subclasses, and the results obtained by different methods can not be directly compared in most cases. Recently, the development of homogeneous assays facilitated the LDL subfraction analysis making possible large clinical studies evaluating the significance of sdLDL in the development of cardiovascular disease. Further studies are needed to establish guidelines for sdLDL evaluation and correction in clinical practice

    Use of Natural Products for Direct Anti-Atherosclerotic Therapy

    Get PDF
    Atherosclerosis and vascular disorders, which result from atherosclerosis, represent one of the major problems in the modern medicine and public health. Atherosclerosis is characterized by structural and functional changes of large arteries. The approaches for the treatment of atherosclerosis require at least the prevention of growth of atherosclerotic lesions and reduction in the lipid core mass, which would followed by plaque stabilization. Taken together, these approaches could theoretically result in the regression of arterial lesions. Atherosclerosis develops in the arterial wall and remains asymptomatic until ischemia of distal organs is evident. Therapy of clinical manifestations of atherosclerosis is largely aimed at reducing symptoms or affecting hemodynamic response and often does not affect the cause or course of disease, namely the atherosclerotic lesion itself. Of course, anti-atherosclerotic effects of statins revealed in many prospective clinical trials may be considered; however, statins have never been recognized as the drugs indicated just for direct treatment or prevention of atherosclerosis. They are used predominately in the course of hypolipidemic therapy, and the effects of treatment are estimated by success in reaching the target level of low density lipoprotein (LDL) cholesterol, but not the regression of atherosclerotic lesion or intimamedia thickness. The last should be considered as beneficial effect, which is mainly due to pleiotropic mechanisms of action. Atherosclerosis develops over many years, so anti-atherosclerotic therapy should be a long-term or even lifelong therapy. Tachyphylaxis, long-term toxicity and cost amongst other issues may present problems for the use of conventional medications in a long-term. Drugs based on natural products can be a good alternative

    Low density lipoprotein-induced lipid accumulation is a key phenomenon of atherogenesis at the arterial cell level

    No full text
    Lipid accumulation in cells of subendothelial intima and the formation of foam cells is the earliest and the most noticeable manifestation of atherosclerosis at the cellular level. Generally, the foam cell formation is the result of interaction of cell with pro-atherogenic low-density lipoprotein providing cholesterol delivery and anti-atherogenic high-density lipoprotein providing its efflux. In this review, we discuss possible mechanisms of foam cell formation, the role of intracellular lipid deposition as a trigger of atherosclerotic lesion development, current approaches to diagnostics and strategies for preventing atherosclerosis based on recent knowledge of causes of foam cell formation

    Nanocarriers in improving chemotherapy of multidrug resistant tumors : key developments and perspectives

    No full text
    The multidrug resistance (MDR) of tumor cells significantly reduces the efficiency of traditional anticancer therapy. Tumor MDR is complex and involves several mechanisms such as decreased drug uptake, increased drug efflux, enhanced drug exocytosis, increased drug detoxification and inactivation by drugmetabolizing enzymes, altered drug targets due to genetic and epigenetic modifications, altered DNA repair, and impaired apoptotic pathways. Implementation of nanoparticles can markedly improve drug delivery through increased stability in the plasma, prolonged half-life, enhanced specificity of transfer, and advanced drug accumulation and retention in the tumor cells. So far, many various types of nanocarriers have been used for the delivery of anticancer agents. These carriers greatly increase anti-tumor effects of cytotoxic agents since drug-carrying nanoparticles are able to reverse MDR. The promising integrative approach in cancer nanotherapy assumes the development of multifunctional delivery systems simultaneously transmitting various agents such as drugs, genes, imaging agents, and targeting ligands in order to enhance anti-tumor toxicity and nanoparticle tracking

    Epigenetically active drugs inhibiting DNA methylation and histone deacetylation

    No full text
    Epigenetic mechanisms, which are involved in the regulation of gene expression, are tightly controlled. Loss of a proper epigenetic control can lead to global epigenetic alterations frequently observed in various diseases including cancer. Aberrant epigenetic changes induced in malignant cells lead to emergence of neoplastic properties, which inhibit cell differentiation and strict cell cycle control but greatly enhance stemness-related features. However, abnormal epigenetic patterns can be reversed by action of epigenetically active agents. Epigenetic machinery comprises a variety DNA/histone modifiers and chromatin remodelers. Chemical substances able to influence on the activity of epigenetic factors such as inhibitors of DNA methyltransferases or histone deacetylase inhibitors can be used as therapeutic agents for improving aberrant epigenetic signatures in cancer cells. Preclinical studies showed efficiency of such epigenetic drugs for the treatment of variety of cancers. So far, several epigenetically active compounds were approved for therapy of hematological malignancies. However, many challenges should be resolved for efficient use of epidrugs in the treatment of non-hematological solid tumors and advanced cancers associated with chemoresistance and higher risk of relapse

    Thrombospondins: A Role in Cardiovascular Disease

    No full text
    Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial

    Sex-Specific Features of Calcific Aortic Valve Disease

    No full text
    Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed

    Calcifying Matrix Vesicles and Atherosclerosis

    No full text
    Artery calcification is a well-recognized predictor of late atherosclerotic complications. In the intima media, calcification starts with apoptosis of vascular smooth muscle cells (VSMCs) and the release of calcifying matrix vesicles with diameter of 0.5–15 μm that can be observed microscopically. In complicated plaques, calcification is generally less frequent. Calcifying vesicles are released by proatherosclerotic VSMCs into the collagen-rich matrix. The vesicles can penetrate into the intima media and protrude into the arterial lumen and thereby may represent a potential cause of atherothrombosis. In calcified fibrolipid plaques, the rate of calcification is increased but is followed with healing of a lesion rupture and exhibited by further erosion and/or intimal thickening. Generally, calcification directly correlates with the apoptosis of VSMCs and macrophages accompanied by the release of osteogenic matrix vesicles. This is a hallmark of atherosclerosis-related apoptosis of VSMCs that is commonly released in plaque stabilization

    The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2

    No full text
    The mononuclear phagocytes control the body homeostasis through the involvement in resolving tissue injury and further wound healing. Indeed, local tissue microenvironmental changes can significantly influence the functional behavior of monocytes and macrophages. Such microenvironmental changes for example occur in an atherosclerotic plaque during all progression stages. In response to exogenous stimuli, macrophages show a great phenotypic plasticity and heterogeneity. Exposure of monocytes to inflammatory or anti-inflammatory conditions also induces predominant differentiation to proinflammatory (M1) or anti-inflammatory (M2) macrophage subsets and phenotype switch between macrophage subsets. The phenotype transition is accompanied with great changes in the macrophage transcriptome and regulatory networks. Interferon-regulatory factors (IRFs) play a key role in hematopoietic development of monocytes, their differentiation to macrophages, and regulating macrophage maturation, phenotypic polarization, phenotypic switch, and function. Of 9 IRFs, at least 3 (IRF-1, IRF-5, and IRF-8) are involved in the commitment of proinflammatory M1 whereas IRF-3 and IRF-4 control M2 polarization. The role of IRF-2 is context-dependent. The IRF impact on macrophage phenotype plasticity and heterogeneity is complex and involves activating and repressive function in triggering transcription of target genes
    corecore