5 research outputs found

    HIV incidence after pre-exposure prophylaxis initiation among women and men at elevated HIV risk: A population-based study in rural Kenya and Uganda.

    Get PDF
    BACKGROUND: Oral pre-exposure prophylaxis (PrEP) is highly effective for HIV prevention, but data are limited on HIV incidence among PrEP users in generalized epidemic settings, particularly outside of selected risk groups. We performed a population-based PrEP study in rural Kenya and Uganda and sought to evaluate both changes in HIV incidence and clinical and virologic outcomes following seroconversion on PrEP. METHODS AND FINDINGS: During population-level HIV testing of individuals ≥15 years in 16 communities in the Sustainable East Africa Research in Community Health (SEARCH) study (NCT01864603), we offered universal access to PrEP with enhanced counseling for persons at elevated HIV risk (based on serodifferent partnership, machine learning-based risk score, or self-identified HIV risk). We offered rapid or same-day PrEP initiation and flexible service delivery with follow-up visits at facilities or community-based sites at 4, 12, and every 12 weeks up to week 144. Among participants with incident HIV infection after PrEP initiation, we offered same-day antiretroviral therapy (ART) initiation and analyzed HIV RNA, tenofovir hair concentrations, drug resistance, and viral suppression (<1,000 c/ml based on available assays) after ART start. Using Poisson regression with cluster-robust standard errors, we compared HIV incidence among PrEP initiators to incidence among propensity score-matched recent historical controls (from the year before PrEP availability) in 8 of the 16 communities, adjusted for risk group. Among 74,541 individuals who tested negative for HIV, 15,632/74,541 (21%) were assessed to be at elevated HIV risk; 5,447/15,632 (35%) initiated PrEP (49% female; 29% 15-24 years; 19% in serodifferent partnerships), of whom 79% engaged in ≥1 follow-up visit and 61% self-reported PrEP adherence at ≥1 visit. Over 7,150 person-years of follow-up, HIV incidence was 0.35 per 100 person-years (95% confidence interval [CI] 0.22-0.49) among PrEP initiators. Among matched controls, HIV incidence was 0.92 per 100 person-years (95% CI 0.49-1.41), corresponding to 74% lower incidence among PrEP initiators compared to matched controls (adjusted incidence rate ratio [aIRR] 0.26, 95% CI 0.09-0.75; p = 0.013). Among women, HIV incidence was 76% lower among PrEP initiators versus matched controls (aIRR 0.24, 95% CI 0.07-0.79; p = 0.019); among men, HIV incidence was 40% lower, but not significantly so (aIRR 0.60, 95% CI 0.12-3.05; p = 0.54). Of 25 participants with incident HIV infection (68% women), 7/25 (28%) reported taking PrEP ≤30 days before HIV diagnosis, and 24/25 (96%) started ART. Of those with repeat HIV RNA after ART start, 18/19 (95%) had <1,000 c/ml. One participant with viral non-suppression was found to have transmitted viral resistance, as well as emtricitabine resistance possibly related to PrEP use. Limitations include the lack of contemporaneous controls to assess HIV incidence without PrEP and that plasma samples were not archived to assess for baseline acute infection. CONCLUSIONS: Population-level offer of PrEP with rapid start and flexible service delivery was associated with 74% lower HIV incidence among PrEP initiators compared to matched recent controls prior to PrEP availability. HIV infections were significantly lower among women who started PrEP. Universal HIV testing with linkage to treatment and prevention, including PrEP, is a promising approach to accelerate reductions in new infections in generalized epidemic settings. TRIAL REGISTRATION: ClinicalTrials.gov NCT01864603

    Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda

    Get PDF
    Background International and global organisations advocate targeting interventions to areas of high HIV prevalence (ie, hotspots). To better understand the potential benefits of geo-targeted control, we assessed the extent to which HIV hotspots along Lake Victoria sustain transmission in neighbouring populations in south-central Uganda. Methods We did a population-based survey in Rakai, Uganda, using data from the Rakai Community Cohort Study. The study surveyed all individuals aged 15–49 years in four high-prevalence Lake Victoria fishing communities and 36 neighbouring inland communities. Viral RNA was deep sequenced from participants infected with HIV who were antiretroviral therapy-naive during the observation period. Phylogenetic analysis was used to infer partial HIV transmission networks, including direction of transmission. Reconstructed networks were interpreted through data for current residence and migration history. HIV transmission flows within and between high-prevalence and low-prevalence areas were quantified adjusting for incomplete sampling of the population. Findings Between Aug 10, 2011, and Jan 30, 2015, data were collected for the Rakai Community Cohort Study. 25 882 individuals participated, including an estimated 75·7% of the lakeside population and 16·2% of the inland population in the Rakai region of Uganda. 5142 participants were HIV-positive (2703 [13·7%] in inland and 2439 [40·1%] in fishing communities). 3878 (75·4%) people who were HIV-positive did not report antiretroviral therapy use, of whom 2652 (68·4%) had virus deep-sequenced at sufficient quality for phylogenetic analysis. 446 transmission networks were reconstructed, including 293 linked pairs with inferred direction of transmission. Adjusting for incomplete sampling, an estimated 5·7% (95% credibility interval 4·4–7·3) of transmissions occurred within lakeside areas, 89·2% (86·0–91·8) within inland areas, 1·3% (0·6–2·6) from lakeside to inland areas, and 3·7% (2·3–5·8) from inland to lakeside areas. Interpretation Cross-community HIV transmissions between Lake Victoria hotspots and surrounding inland populations are infrequent and when they occur, virus more commonly flows into rather than out of hotspots. This result suggests that targeted interventions to these hotspots will not alone control the epidemic in inland populations, where most transmissions occur. Thus, geographical targeting of high prevalence areas might not be effective for broader epidemic control depending on underlying epidemic dynamics. Funding The Bill & Melinda Gates Foundation, the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, the National Institute of Child Health and Development, the Division of Intramural Research of the National Institute for Allergy and Infectious Diseases, the World Bank, the Doris Duke Charitable Foundation, the Johns Hopkins University Center for AIDS Research, and the President's Emergency Plan for AIDS Relief through the Centers for Disease Control and Prevention

    Genital Anaerobic Bacterial Overgrowth and the PrePex Male Circumcision Device, Rakai, Uganda.

    No full text
    The PrePex circumcision device causes ischemic necrosis of the foreskin, raising concerns of anaerobic overgrowth. We compared the subpreputial microbiome of 2 men 7 days after PrePex device placement to that of 145 uncircumcised men in Rakai, Uganda, using 16S ribosomal (rRNA) RNA gene–based quantitative polymerase chain reaction analysis and sequencing. PrePex users had higher absolute abundance of all bacteria than uncircumcised men (P = .001), largely due to increased numbers of the following anaerobes: Porphyromonas (5.2 × 10(7) 16S rRNA gene copies/swab in the PrePex group and 1.1 × 10(6) 16S rRNA gene copies/swab in uncircumcised men; P = .002), Peptoniphilus (1.0 × 10(7) and 1.8 × 10(6) 16S rRNA gene copies/swab, respectively; P < .05), Anaerococcus (1.0 × 10(7) and 1.1 × 10(6) 16S rRNA gene copies/swab, respectively; P < .001), and Campylobacter ureolyticus (1.7 × 10(5) and 1.6 × 10(7)16S rRNA gene copies/swab, respectively; P < .001). The PrePex-associated increase in anaerobes may account for unpleasant odor and a possible heightened risk of tetanus

    Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda

    No full text
    International audienceBackground: International and global organisations advocate targeting interventions to areas of high HIV prevalence (ie, hotspots). To better understand the potential benefits of geo-targeted control, we assessed the extent to which HIV hotspots along Lake Victoria sustain transmission in neighbouring populations in south-central Uganda.Methods: We did a population-based survey in Rakai, Uganda, using data from the Rakai Community Cohort Study. The study surveyed all individuals aged 15-49 years in four high-prevalence Lake Victoria fishing communities and 36 neighbouring inland communities. Viral RNA was deep sequenced from participants infected with HIV who were antiretroviral therapy-naive during the observation period. Phylogenetic analysis was used to infer partial HIV transmission networks, including direction of transmission. Reconstructed networks were interpreted through data for current residence and migration history. HIV transmission flows within and between high-prevalence and low-prevalence areas were quantified adjusting for incomplete sampling of the population.Findings: Between Aug 10, 2011, and Jan 30, 2015, data were collected for the Rakai Community Cohort Study. 25 882 individuals participated, including an estimated 75·7% of the lakeside population and 16·2% of the inland population in the Rakai region of Uganda. 5142 participants were HIV-positive (2703 [13·7%] in inland and 2439 [40·1%] in fishing communities). 3878 (75·4%) people who were HIV-positive did not report antiretroviral therapy use, of whom 2652 (68·4%) had virus deep-sequenced at sufficient quality for phylogenetic analysis. 446 transmission networks were reconstructed, including 293 linked pairs with inferred direction of transmission. Adjusting for incomplete sampling, an estimated 5·7% (95% credibility interval 4·4-7·3) of transmissions occurred within lakeside areas, 89·2% (86·0-91·8) within inland areas, 1·3% (0·6-2·6) from lakeside to inland areas, and 3·7% (2·3-5·8) from inland to lakeside areas.Interpretation: Cross-community HIV transmissions between Lake Victoria hotspots and surrounding inland populations are infrequent and when they occur, virus more commonly flows into rather than out of hotspots. This result suggests that targeted interventions to these hotspots will not alone control the epidemic in inland populations, where most transmissions occur. Thus, geographical targeting of high prevalence areas might not be effective for broader epidemic control depending on underlying epidemic dynamics.Funding: The Bill & Melinda Gates Foundation, the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, the National Institute of Child Health and Development, the Division of Intramural Research of the National Institute for Allergy and Infectious Diseases, the World Bank, the Doris Duke Charitable Foundation, the Johns Hopkins University Center for AIDS Research, and the President's Emergency Plan for AIDS Relief through the Centers for Disease Control and Prevention
    corecore