12 research outputs found

    Interventions to reduce pesticide exposure from the agricultural sector in Africa: a workshop report

    Get PDF
    Despite the fact that several cases of unsafe pesticide use among farmers in different parts of Africa have been documented, there is limited evidence regarding which specific interventions are effective in reducing pesticide exposure and associated risks to human health and ecology. The overall goal of the African Pesticide Intervention Project (APsent) study is to better understand ongoing research and public health activities related to interventions in Africa through the implementation of suitable target-specific situations or use contexts. A systematic review of the scientific literature on pesticide intervention studies with a focus on Africa was conducted. This was followed by a qualitative survey among stakeholders involved in pesticide research or management in the African region to learn about barriers to and promoters of successful interventions. The project was concluded with an international workshop in November 2021, where a broad range of topics relevant to occupational and environmental health risks were discussed such as acute poisoning, street pesticides, switching to alternatives, or disposal of empty pesticide containers. Key areas of improvement identified were training on pesticide usage techniques, research on the effectiveness of interventions targeted at exposure reduction and/or behavioral changes, awareness raising, implementation of adequate policies, and enforcement of regulations and processes

    Characterization of polymer–quarry dust composite for structural applications

    No full text
    This study explores the utilization of quarry dust in producing polymer composite for roofing tiles application. Quarry dust was incorporated into high-density polyethylene (HDPE) and polypropylene (PP) in various weight proportions (5 %, 20 %, 40 %, 60 %, and 80 %). Experimental tests that were conducted include the melt flow index (MFI), microstructural analysis, water absorption, Shore D hardness, and Charpy impact strength. The PP+60 wt.% quarry dust had the highest MFI value of 24.5 g/10 min hence easy to process. The water absorption for 60 % and 80 wt.% composition was found to be significantly high as compared to other proportions. The Shore D hardness increases with an increase in the amount of quarry dust with the highest Shore D hardness value of 82 attained for samples having 80 wt.% quarry dust. For the impact strength, only 5 wt.% composition of quarry dust in both polymer composites had a higher value than the pure polymer with PP+5 wt.% quarry dust exhibiting a higher impact strength of 69.6 kJ/m2. This work demonstrates that the properties of waste plastics can be improved by using quarry dust as reinforcement, suiting green construction applications such as the production of roofing tiles

    Data on the effect of high-pressure torsion processing on secondary cast Al–10%Si– Cu piston alloy: Methods, microstructure and mechanical characterizations

    No full text
    The dataset presented here shows the microstructure and mechanical properties of secondary (recycled) cast aluminum-silicon (Al–Si) piston alloys processed through severe plastic deformation technique, known as high-pressure torsion (HPT). The HPT processing was undertaken for 1/4, 1/2, 1 and 10 turns of the lower anvil (rotating at constant speed of 1rpm) while the upper anvil maintained at a normal pressure of 3.0 GPa. The data on microstructural evolution obtained at the central region and edge of the circular (disk) HPT sample were obtained using optical and scanning electron microscopy and these data are presented here. The data on the analysis of the particle shape, sizes and distribution from the micrographs using ImageJ software are also presented. Data on mechanical properties characterized using Vickers microhardness measurement across the surface of HPT sample are also shown. Pictures depicting the microhardness measurement scheme, high-pressure torsion facility and sample nomenclature are presented.</p

    Finite element simulation of AISI 1025 and Al6061 specimen with coated and uncoated tools on turning process using deform-3D

    No full text
    This paper describes how to use Deform-3D software to create a turning process model that can be used to simulate the turning on AISI 1025 carbon steel and Al6061 billets in industrial and automotive applications. The Deform-3D Software is used to build a 3D Finite Element turning model. Pre-processing, Simulation, and Post-processing are all modules that can be used to simulate. Tool and workpiece information, as well as appropriate necessary parameters, were taken into account in the software’s Pre Processing module. Simulation was performed at two different rotational speeds for two different materials using with and without titanium nitride coated tungsten carbide tool. After 1000 steps of simulation, results such as damage, effective strain, effective stress, total velocity, total displacement, and Temperature are reported from the Post Processing module. From results, comparative analysis will be carried out on performance characteristics at different rotational speeds. During the turning process, to accurately predict metal removal Deform 3D software is used for finite element simulation
    corecore