75 research outputs found

    Evaluation of the SD Bioline TB Ag MPT64 test for identification of <i>Mycobacterium tuberculosis</i> complex from liquid cultures in Southwestern Uganda

    Get PDF
    Background: To confirm presence of Mycobacterium tuberculosis complex, some tuberculosis culture laboratories still rely on para-nitrobenzoic acid (PNB), a traditional technique that requires sub-culturing of clinical isolates and two to three weeks to give results. Rapid identification tests have improved turnaround times for mycobacterial culture results. Considering the challenges of the PNB method, we assessed the performance of the SD Bioline TB Ag MPT64 assay by using PNB as gold standard to detect M. tuberculosis complex from acid-fast bacilli (AFB) positive cultures. Objectives: The aim of this study was to determine the sensitivity, specificity and turnaround time of the SD MPT64 assay for identification of M. tuberculosis complex, in a setting with high prevalence of tuberculosis and HIV. Methods: A convenience sample of 690 patients, with tuberculosis symptoms, was enrolled at Epicentre Mbarara Research Centre between April 2010 and June 2011. The samples were decontaminated using NALC-NaOH and re-suspended sediments inoculated in Mycobacterium Growth Indicator Tubes (MGIT) media, then incubated at 37 °C for a maximum of eight weeks. A random sample of 50 known negative cultures and 50 non-tuberculous mycobacteria isolates were tested for specificity, while sensitivity was based on AFB positivity. The time required from positive culture to reporting of results was also assessed with PNB used as the gold standard. Results: Of the 138 cultures that were AFB-positive, the sensitivity of the SD MPT64 assay was 100.0% [95% CI: 97.3 – 100] and specificity was 100.0% (95% CI, 96.4 – 100). The median time from a specimen receipt to confirmation of strain was 10 days [IQR: 8–12] with SD MPT64 and 24 days [IQR: 22–26] with PNB. Conclusion: The SD MPT64 assay is comparable to PNB for identification of M. tuberculosis complex and reduces the time to detection

    Carriage prevalence and serotype distribution of Streptococcus pneumoniae prior to 10-valent pneumococcal vaccine introduction: A population-based cross-sectional study in South Western Uganda, 2014.

    Get PDF
    BACKGROUND: Information on Streptococcus pneumoniae nasopharyngeal (NP) carriage before the pneumococcal conjugate vaccine (PCV) introduction is essential to monitor impact. The 10-valent PCV (PCV10) was officially introduced throughout Ugandan national childhood immunization programs in 2013 and rolled-out countrywide during 2014. We aimed to measure the age-specific Streptococcus pneumoniae carriage and serotype distribution across all population age groups in the pre-PCV10 era in South Western Uganda. METHODS: We conducted a two-stage cluster, age-stratified, cross-sectional community-based study in Sheema North sub-district between January and March 2014. One NP swab was collected and analyzed for each participant in accordance with World Health Organization guidelines. RESULTS: NP carriage of any pneumococcal serotype was higher among children <2years old (77%; n=387) than among participants aged ≥15years (8.5%; n=325) (chi2 p<0.001). Of the 623 positive cultures, we identified 49 serotypes among 610 (97.9%) isolates; thirteen (2.1%) isolates were non-typeable. Among <2years old, serotypes 6A, 6B, 14, 15B, 19F and 23F accounted for half of all carriers. Carriage prevalence with PCV10 serotypes was 29.4% among individuals aged <2years (n=387), 23.4% in children aged 2-4years (n=217), 11.4% in 5-14years (n=417), and 0.4% among individuals ≥15years of age (n=325). The proportion of carried pneumococci serotypes contained in PCV10 was 38.1% (n=291), 32.8% (n=154), 29.4% (n=156), and 4.4% (n=22) among carriers aged <2years, 2-4years, 5-14years and ≥15years, respectively. DISCUSSION: In Sheema district, the proportion of PCV10 serotypes was low (<40%), across all age groups, especially among individuals aged 15years or older (<5%). PCV10 introduction is likely to impact transmission among children and to older individuals, but less likely to substantially modify pneumococcal NP ecology among individuals aged 15years or older

    Sociocultural and Structural Factors Contributing to Delays in Treatment for Children with Severe Malaria: A Qualitative Study in Southwestern Uganda

    Get PDF
    Malaria is a leading cause of pediatric mortality, and Uganda has among the highest incidences in the world. Increased morbidity and mortality are associated with delays to care. This qualitative study sought to characterize barriers to prompt allopathic care for children hospitalized with severe malaria in the endemic region of southwestern Uganda. Minimally structured, qualitative interviews were conducted with guardians of children admitted to a regional hospital with severe malaria. Using an inductive and content analytic approach, transcripts were analyzed to identify and define categories that explain delayed care. These categories represented two broad themes: sociocultural and structural factors. Sociocultural factors were 1) interviewee's distinctions of “traditional” versus “hospital” illnesses, which were mutually exclusive and 2) generational conflict, where deference to one's elders, who recommended traditional medicine, was expected. Structural factors were 1) inadequate distribution of health-care resources, 2) impoverishment limiting escalation of care, and 3) financial impact of illness on household economies. These factors perpetuate a cycle of illness, debt, and poverty consistent with a model of structural violence. Our findings inform a number of potential interventions that could alleviate the burden of this preventable, but often fatal, illness. Such interventions could be beneficial in similarly endemic, low-resource settings

    Diagnosing Severe Falciparum Malaria in Parasitaemic African Children: A Prospective Evaluation of Plasma PfHRP2 Measurement.

    Get PDF
    In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2) is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria. Admission plasma PfHRP2 was measured prospectively in African children (from Mozambique, The Gambia, Kenya, Tanzania, Uganda, Rwanda, and the Democratic Republic of the Congo) aged 1 month to 15 years with severe febrile illness and a positive P. falciparum lactate dehydrogenase (pLDH)-based rapid test in a clinical trial comparing parenteral artesunate versus quinine (the AQUAMAT trial, ISRCTN 50258054). In 3,826 severely ill children, Plasmadium falciparum PfHRP2 was higher in patients with coma (p = 0.0209), acidosis (p<0.0001), and severe anaemia (p<0.0001). Admission geometric mean (95%CI) plasma PfHRP2 was 1,611 (1,350-1,922) ng/mL in fatal cases (n = 381) versus 1,046 (991-1,104) ng/mL in survivors (n = 3,445, p<0.0001), without differences in parasitaemia as assessed by microscopy. There was a U-shaped association between log(10) plasma PfHRP2 and risk of death. Mortality increased 20% per log(10) increase in PfHRP2 above 174 ng/mL (adjusted odds ratio [AOR] 1.21, 95%CI 1.05-1.39, p = 0.009). A mechanistic model assuming a PfHRP2-independent risk of death in non-malaria illness closely fitted the observed data and showed malaria-attributable mortality less than 50% with plasma PfHRP2≤174 ng/mL. The odds ratio (OR) for death in artesunate versus quinine-treated patients was 0.61 (95%CI 0.44-0.83, p = 0.0018) in the highest PfHRP2 tertile, whereas there was no difference in the lowest tertile (OR 1.05; 95%CI 0.69-1.61; p = 0.82). A limitation of the study is that some conclusions are drawn from a mechanistic model, which is inherently dependent on certain assumptions. However, a sensitivity analysis of the model indicated that the results were robust to a plausible range of parameter estimates. Further studies are needed to validate our findings. Plasma PfHRP2 has prognostic significance in African children with severe falciparum malaria and provides a tool to stratify the risk of "true" severe malaria-attributable disease as opposed to other severe illnesses in parasitaemic African children

    Inhaled Nitric Oxide as an Adjunctive Treatment for Cerebral Malaria in Children: A Phase II Randomized Open-Label Clinical Trial

    Get PDF
    Background. Children with cerebral malaria (CM) have high rates of mortality and neurologic sequelae. Nitric oxide (NO) metabolite levels in plasma and urine are reduced in CM. Methods. This randomized trial assessed the efficacy of inhaled NO versus nitrogen (N2) as an adjunctive treatment for CM patients receiving intravenous artesunate.We hypothesized that patients treated with NO would have a greater increase of the malaria biomarker, plasma angiopoietin-1 (Ang-1) after 48 hours of treatment. Results. Ninety-two children with CM were randomized to receive either inhaled 80 part per million NO or N2 for 48 or more hours. Plasma Ang-1 levels increased in both treatment groups, but there was no difference between the groups at 48 hours (P = not significant [NS]). Plasma Ang-2 and cytokine levels (tumor necrosis factor-α, interferon- γ, interleukin [IL]-1β, IL-6, IL-10, and monocyte chemoattractant protein-1) decreased between inclusion and 48 hours in both treatment groups, but there was no difference between the groups (P = NS). Nitric oxide metabolite levels—blood methemoglobin and plasma nitrate—increased in patients treated with NO (both P \u3c .05). Seven patients in the N2 group and 4 patients in the NO group died. Five patients in the N2 group and 6 in the NO group had neurological sequelae at hospital discharge. Conclusions. Breathing NO as an adjunctive treatment for CM for a minimum of 48 hours was safe, increased blood methemoglobin and plasma nitrate levels, but did not result in a greater increase of plasma Ang-1 levels at 48 hours

    Predictors of delayed culture conversion among Ugandan patients.

    Get PDF
    BACKGROUND: Estimates of month-2 culture conversion, a proxy indicator of tuberculosis (TB) treatment efficacy in phase-2 trials can vary by culture-type and geographically with lower rates reported among African sites. The sub-study aimed at comparing TB detection rates of different culture media, within and across rifampicin-based regimens (R10, 15 and 20 mg/Kg) over a 6-month treatment follow-up period, and to establish predictors of month-2 culture non-conversion among HIV-negative TB patients enrolled at RIFATOX trial site in Uganda. METHODS: Unlike in other Rifatox Trial sites, it is only in Uganda were Lowenstein-Jensen (LJ) and Mycobacteria growth indicator tube (MGIT) were used throughout 6-months for treatment monitoring. Conversion rates were compared at month-2, 4 and 6 across cultures and treatment-type. Binomial regression analysis performed for predictors of month-2 non-conversion. RESULTS: Of the 100 enrolled patients, 45% had converted based on combined LJ and MGIT by month-2, with no significant differences across treatment arms, p = 0.721. LJ exhibited higher conversion rates than MGIT at month-2 (58.4% vs 56.0%, p = 0.0707) and month-4 (98.9% vs 88.4%, p = 0.0391) respectively, more so within the high-dose rifampicin arms. All patients had converted by month-6. Time-to-TB detection (TTD) on MGIT and social service jobs independently predict month-2 non-conversion. CONCLUSION: The month-2 culture conversion used in phase 2 clinical trials as surrogate marker of treatment efficacy is influenced by the culture method used for monitoring mycobacterial response to TB treatment. Therefore, multi-centric TB therapeutic trials using early efficacy endpoint should use the same culture method across sites. The Time-to-detection of MTB on MGIT prior to treatment and working in Social service jobs bear an increased risk of culture non-conversion at month-2. TRIAL REGISTRATION: ISRCTN ISRCTN55670677 . Registered 09th November 2010. Retrospectively registered

    Malaria is an uncommon cause of adult sepsis in south-western Uganda

    Get PDF
    Malaria is often considered a cause of adult sepsis in malaria endemic areas. However, diagnostic limitations can make distinction between malaria and other infections challenging. Therefore, the objective of this study was to determine the relative contribution of malaria to adult sepsis in south-western Uganda

    Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda.

    Get PDF
    BACKGROUND: Southwestern Uganda has high malaria heterogeneity despite moderate vector control and other interventions. Moreover, the early biting transmission and increased resistance to insecticides might compromise strategies relying on vector control. Consequently, monitoring of vector behaviour and insecticide efficacy is needed to assess the effectiveness of strategies aiming at malaria control. This eventually led to an entomological survey in two villages with high malaria prevalence in this region. METHODS: During rainy, 2011 and dry season 2012, mosquitoes were collected in Engari and Kigorogoro, Kazo subcounty, using human landing collection, morning indoor resting collection, pyrethrum spray collection and larval collection. Circumsporozoite protein of Plasmodium falciparum sporozoites in female Anopheles mosquitoes was detected using ELISA assay. Bioassays to monitor Anopheles resistance to insecticides were performed. RESULTS: Of the 1,021 female Anopheles species captured, 62% (632) were Anopheles funestus and 36% (371) were Anopheles gambiae s.l. The most common species were Anopheles gambiae s.l. in Engari (75%) and A. funestus in Kigorogoro (83%). Overall, P. falciparum prevalence was 2.9% by ELISA. The daily entomological inoculation rates were estimated at 0.17 and 0.58 infected bites/person/night during rainy and dry season respectively in Engari, and 0.81 infected bites/person/night in Kigorogoro during dry season. In both areas and seasons, an unusually early evening biting peak was observed between 6 - 8 p.m. In Engari, insecticide bioassays showed 85%, 34% and 12% resistance to DDT during the rainy season, dry season and to deltamethrin during the dry season, respectively. In Kigorogoro, 13% resistance to DDT and to deltamethrin was recorded. There was no resistance observed to bendiocarb and pirimiphos methyl. CONCLUSIONS: The heterogeneity of mosquito distribution, entomological indicators and resistance to insecticides in villages with high malaria prevalence highlight the need for a long-term vector control programme and monitoring of insecticide resistance in Uganda. The early evening biting habits of Anopheles combined with resistance to DDT and deltamethrin observed in this study suggest that use of impregnated bed nets alone is insufficient as a malaria control strategy, urging the need for additional interventions in this area of high transmission
    • …
    corecore