12 research outputs found

    Optimization of p-type contacts to InGaN-based laser diodes and light emitting diodes grown by plasma assisted molecular beam epitaxy

    No full text
    We investigated the influence of the In0.17Ga0.83N:Mg contact layer grown by plasma assisted molecular beam epitaxy on the resistivity of p-type Ni/Au contacts. We demonstrate that the Schottky barrier width for p-type contact is less than 5 nm. We compare circular transmission line measurements with a p-n diode current-voltage characteristics and show that discrepancies between these two methods can occur if surface quality is deteriorated. It is found that the most efficient contacts to p-type material consist of In0.17Ga0.83N:Mg contact layer with Mg doping levelas high as 2 × 1020 cm–3

    Switching of exciton character in double InGaN/GaN quantum wells.

    No full text
    International audienceWe study the inter-well excitonic coupling in a series of In0.17Ga0.83N/GaN Double QWs (DQWs) with varying central barrier width. We observe the switching between indirect IX (inter-well) and direct DX (intra-well) excitons, for thin barriers (2 nm or less), depending on the exciton density. This density is controlled, in cw-PL, by the pumping laser power density (LPD). Above a certain threshold, we observe a sudden change of the PL blue-shift, when switching from IXs (large slope) to DXs (weak slope). In time-resolved PL, the exciton density evolves as the PL intensity decays with time, and the switching occurs from DXs to IXs, after a certain characteristic time. The decay time of IXs is of the order of hundreds of s, whereas the decay time of DXs is shorter by three orders of magnitude. The switching thresholds in both cw- and TR-PL present clear exponential dependences upon the width of the central barrier, which demonstrates the role of carrier tunneling in the overall switching processes. The described effects were studied at T10K but we found that IXs persist up to T=300K pointing out the importance of large exciton biding energy in nitride QWs

    Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs

    No full text
    The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses—2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger–Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one

    Role of Metallic Adlayer in Limiting Ge Incorporation into GaN

    No full text
    Atomically thin metal adlayers are used as surfactants in semiconductor crystal growth. The role of the adlayer in the incorporation of dopants in GaN is completely unexplored, probably because n-type doping of GaN with Si is relatively straightforward and can be scaled up with available Si atomic flux in a wide range of dopant concentrations. However, a surprisingly different behavior of the Ge dopant is observed, and the presence of atomically thin gallium or an indium layer dramatically affects Ge incorporation, hindering the fabrication of GaN:Ge structures with abrupt doping profiles. Here, we show an experimental study presenting a striking improvement in sharpness of the Ge doping profile obtained for indium as compared to the gallium surfactant layer during GaN-plasma-assisted molecular beam epitaxy. We show that the atomically thin indium surfactant layer promotes the incorporation of Ge in contrast to the gallium surfactant layer, which promotes segregation of Ge to the surface and Ge crystallite formation. Understanding the role of the surfactant is essential to control GaN doping and to obtain extremely high n-type doped III-nitride layers using Ge, because doping levels >1020 cm−3 are not easily available with Si

    Bidirectional light-emitting diode as a visible light source driven by alternating current

    No full text
    Abstract Gallium nitride-based light-emitting diodes have revolutionized the lighting market by becoming the most energy-efficient light sources. However, the power grid, in example electricity delivery system, is built based on alternating current, which raises problems for directly driving light emitting diodes that require direct current to operate effectively. In this paper, we demonstrate a proof-of-concept device that addresses this fundamental issue – a gallium nitride-based bidirectional light-emitting diode. Its structure is symmetrical with respect to the active region, which, depending on the positive or negative bias, allows for the injection of either electrons or holes from each side. It is composed of two tunnel junctions that surround the active region. In this work, the optical and electrical properties of bidirectional light emitting diodes are investigated under direct and alternating current conditions. We find that the light is emitted in both directions of the supplied current, contrary to conventional light emitting diodes; hence, bidirectional light-emitting diodes can be considered a semiconductor light source powered directly with alternating current. In addition, we show that bidirectional light-emitting diodes can be stacked vertically to multiply the optical power achieved from a single device

    Polarization Doping in a GaN-InN System—Ab Initio Simulation

    No full text
    Polarization doping in a GaN-InN system with a graded composition layer was studied using ab initio simulations. The electric charge volume density in the graded concentration part was determined by spatial potential dependence. The emerging graded polarization charge was determined to show that it could be obtained from a polarization difference and the concentration slope. It was shown that the GaN-InN polarization difference is changed by piezoelectric effects. The polarization difference is in agreement with the earlier obtained data despite the relatively narrow bandgap for the simulated system. The hole generation may be applied in the design of blue and green laser and light-emitting diodes

    Polarization doping— Ab initio verification of the concept: Charge conservation and nonlocality

    No full text
    International audienceIn this work, we study the emergence of polarization doping in Al x Ga 1−x N layers with graded composition from a theoretical viewpoint. It is shown that bulk electric charge density emerges in the graded concentration region. The magnitude of the effect, i.e., the relation between the polarization bulk charge density and the concentration gradient is obtained. The appearance of mobile charge in the wurtzite structure grown along the polar direction was investigated using the combination of ab initio and drift-diffusion models. It was shown that the ab initio results can be recovered precisely by proper parameterization of drift-diffusion representation of the complex nitride system. It was shown that the mobile charge appears due to the increase of the distance between opposite polarization-induced charges. It was demonstrated that, for sufficiently large space distance between polarization charges, the opposite mobile charges are induced. We demonstrate that the charge conservation law applies for fixed and mobile charge separately, leading to nonlocal compensation phenomena involving (i) the bulk fixed and polarization sheet charge at the heterointerfaces and (ii) the mobile band and the defect charge. Therefore, two charge conservation laws are obeyed that induces nonlocality in the system. The magnitude of the effect allows obtaining technically viable mobile charge density for optoelectronic devices without impurity doping (donors or acceptors). Therefore, it provides an additional tool for the device designer, with the potential to attain high conductivities: high carrier concentrations can be obtained even in materials with high dopant ionization energies, and the mobility is not limited by scattering at ionized impurities

    Polarization doping— Ab initio verification of the concept: Charge conservation and nonlocality

    No full text
    International audienceIn this work, we study the emergence of polarization doping in Al x Ga 1−x N layers with graded composition from a theoretical viewpoint. It is shown that bulk electric charge density emerges in the graded concentration region. The magnitude of the effect, i.e., the relation between the polarization bulk charge density and the concentration gradient is obtained. The appearance of mobile charge in the wurtzite structure grown along the polar direction was investigated using the combination of ab initio and drift-diffusion models. It was shown that the ab initio results can be recovered precisely by proper parameterization of drift-diffusion representation of the complex nitride system. It was shown that the mobile charge appears due to the increase of the distance between opposite polarization-induced charges. It was demonstrated that, for sufficiently large space distance between polarization charges, the opposite mobile charges are induced. We demonstrate that the charge conservation law applies for fixed and mobile charge separately, leading to nonlocal compensation phenomena involving (i) the bulk fixed and polarization sheet charge at the heterointerfaces and (ii) the mobile band and the defect charge. Therefore, two charge conservation laws are obeyed that induces nonlocality in the system. The magnitude of the effect allows obtaining technically viable mobile charge density for optoelectronic devices without impurity doping (donors or acceptors). Therefore, it provides an additional tool for the device designer, with the potential to attain high conductivities: high carrier concentrations can be obtained even in materials with high dopant ionization energies, and the mobility is not limited by scattering at ionized impurities
    corecore