28 research outputs found

    Rectal Optical Markers for In-vivo Risk Stratification of Premalignant Colorectal Lesions.

    Get PDF
    Purpose: Colorectal cancer remains the second leading cause of cancer deaths in the U.S. despite being eminently preventable by colonoscopy via removal of premalignant adenomas. In order to more effectively reduce colorectal cancer mortality, improved screening paradigms are needed. Our group pioneered the use of low coherence enhanced backscattering (LEBS) spectroscopy to detect the presence of adenomas throughout the colon via optical interrogation of the rectal mucosa. In a previous ex-vivo biopsy study of 219 patients, LEBS demonstrated excellent diagnostic potential with 89.5% accuracy for advanced adenomas. The objective of the current cross-sectional study is to assess the viability of rectal LEBS in-vivo. Experimental Design: Measurements from 619 patients were taken using a minimally invasive 3.4 mm diameter LEBS probe introduced into the rectum via anoscope or direct insertion, requiring ~1 minute from probe insertion to withdrawal. The diagnostic LEBS marker was formed as a logistic regression of the optical reduced scattering coefficient μs∗ and mass density distribution factor D. Results: The rectal LEBS marker was significantly altered in patients harboring advanced adenomas and multiple non-advanced adenomas throughout the colon. Blinded and cross-validated test performance characteristics showed 88% sensitivity to advanced adenomas, 71% sensitivity to multiple non-advanced adenomas, and 72% specificity in the validation set. Conclusions: We demonstrate the viability of in-vivo LEBS measurement of histologically normal rectal mucosa to predict the presence of clinically relevant adenomas throughout the colon. The current work represents the next step in the development of rectal LEBS as a tool for colorectal cancer risk stratification

    Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy

    No full text
    Low-coherence enhanced backscattering (LEBS) is a depth selective technique that allows noninvasive characterization of turbid media such as biological tissue. LEBS provides a spectral measurement of the tissue reflectance distribution as a function of distance between incident and reflected ray pairs through the use of partial spatial coherence broadband illumination. We present LEBS as a new depth-selective technique to measure optical properties of tissue in situ. Because LEBS enables measurements of reflectance due to initial scattering events, LEBS is sensitive to the shape of the phase function in addition to the reduced scattering coefficient (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu _s^{\bf *}\end{equation*} \end{document}μs*). We introduce a simulation of LEBS that implements a two parameter phase function based on the Whittle–Matérn refractive index correlation function model. We show that the LEBS enhancement factor (E) primarily depends on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu _s^{\bf *}\end{equation*} \end{document}μs*, the normalized spectral dependence of E (Sn) depends on one of the two parameters of the phase function that also defines the functional type of the refractive index correlation function (m), and the LEBS peak width depends on both the anisotropy factor (g) and m. Three inverse models for calculating these optical properties are described and the calculations are validated with an experimental measurement from a tissue phantom

    Buccal spectral markers for lung cancer risk stratification.

    No full text
    Lung cancer remains the leading cause of cancer deaths in the US with >150,000 deaths per year. In order to more effectively reduce lung cancer mortality, more sophisticated screening paradigms are needed. Previously, our group demonstrated the use of low-coherence enhanced backscattering (LEBS) spectroscopy to detect and quantify the micro/nano-architectural correlates of colorectal and pancreatic field carcinogenesis. In the lung, the buccal (cheek) mucosa has been suggested as an excellent surrogate site in the "field of injury". We, therefore, wanted to assess whether LEBS could similarly sense the presence of lung. To this end, we applied a fiber-optic LEBS probe to a dataset of 27 smokers without diagnosed lung cancer (controls) and 46 with lung cancer (cases), which was divided into a training and a blinded validation set (32 and 41 subjects, respectively). LEBS readings of the buccal mucosa were taken from the oral cavity applying gentle contact. The diagnostic LEBS marker was notably altered in patients harboring lung cancer compared to smoking controls. The prediction rule developed on training set data provided excellent diagnostics with 94% sensitivity, 80% specificity, and 95% accuracy. Applying the same threshold to the blinded validation set yielded 79% sensitivity and 83% specificity. These results were not confounded by patient demographics or impacted by cancer type or location. Moreover, the prediction rule was robust across all stages of cancer including stage I. We envision the use of LEBS as the first part of a two-step paradigm shift in lung cancer screening in which patients with high LEBS risk markers are funnelled into more invasive screening for confirmation
    corecore