7 research outputs found

    V<inf>2</inf>O<inf>5</inf> as an inexpensive counter electrode for dye sensitized solar cells

    Full text link
    In pursuit of an abundant, inexpensive and stable counter electrode as an alternative to platinum for dye-sensitized solar cells (DSSCs), we report a new, low-cost substitute material. Here for the first time, we demonstrate that V2O5 can be used as a counter electrode material in DSSCs. We note that the efficiency of DSSCs with commercialV2O5 and hydrothermal treatedV2O5 are upto 1.2% and 1.6%, respectively. The results indicate that, with optimization, V2O5 can be a promising choice to replace platinum from a cost perspective. The innovation of new economical counter electrodes offers a potential way to cut down the industrial costs which is crucial for large-scale production and commercial applications of DSSCs

    Facile hydrothermal synthesis of economically viable VO<inf>2</inf>(M1) counter electrode for dye sensitized solar cells

    Full text link
    In this study, we focus at reducing the fabrication cost of dye sensitized solar cells (DSSCs). Sphere-like VO2(M1) polymorph was synthesized by single step facile hydrothermal approach using citric acid as the reducing agent. Phase purity, charge state and surface morphology of the synthesized product were confirmed by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy respectively. The electrochemical impedance and cyclic voltammograms of VO2 films indicated a good electrocatalytic activity towards redox reaction of the I-/I3- shuttle. Owing to the low cost, low-temperature processing and good catalytic activity, in this work we propose to use VO2 as a counter electrode to substitute the expensive platinum electrode in DSSCs. By means of VO2 based DSSCs we achieved a fivefold reduction in the cost to energy conversion efficiency ratio. It is expected that with further optimization, VO2 can be exploited as a good candidate for counter electrode in DSSC technology

    Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation

    Get PDF
    A facile green synthetic method is proposed for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the bio-template Cinnamomum tamala (C. tamala) leaves extract. The morphological, functional, and structural characterization of synthesized ZnO NPs were studied by adopting different techniques such as energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Visible spectroscopy, fourier transform infrared (FTIR) spectroscopy, raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The fabricated ZnO NPs exhibit an average size of 35 nm, with a hexagonal nanostructure. Further, the well-characterized ZnO NPs were employed for the photocatalytic degradation of methylene blue (MB) in an aqueous solution. The photocatalytic activity was analyzed by changing the various physicochemical factors such as reaction time, amount of photocatalyst, precursor concentration, and calcination temperature of the ZnO NPs. All the studies suggest that the ZnO synthesized through the green protocol exhibits excellent photocatalytic potency against the dye molecules
    corecore