32 research outputs found

    Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity

    Get PDF
    The aim of this work was to study the potential of the non-lignolytic filamentous fungus Penicillium sp. CHY-2, isolated from Antarctic soil, for the biodegradation of eight different aliphatic and aromatic hydrocarbons such as octane, decane, dodecane, ethylbenzene, butylbenzene, naphthalene, acenaphthene, and benzo[a]pyrene. Among all the compounds, CHY-2 showed the highest level of degradation for decane (49.0%), followed by butylbenzene (42.0%) and dodecane (33.0%), and lower levels of degradation for naphthalene (15.0%), acenaphthene (10.0%), octane (8.0%), ethylbenzene (4.0%), and benzo[a]pyrene (2.0%) at 20 °C. The addition of carbon sources such as glucose (5 g L−1) and Tween-80 (5 g L−1) enhanced decane degradation by about 1.8-fold and 1.61-fold respectively at 20 °C. The metabolites produced during the degradation of decane were identified by gas chromatography-mass spectrometry (GC-MS). Furthermore, the enzyme manganese peroxidase (MnP) from CHY-2 was purified. MnP was found to consist of monomers with a molecular mass of 36 kDa. The purified MnP had an optimum pH of 5.0 and temperature of 30 °C. The Km and Vmax values of MnP towards Mn2+ were 1.31 μM and 185.19 μM min−1 respectively. These results indicated that the strain CHY-2 can be used for the degradation of hydrocarbons and could have promising applications in treatment of hydrocarbon contaminated sites

    Emerging contaminants of high concern for the environment: Current trends and future research

    Get PDF
    Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants

    Genetic variability among _Coleus sp_ studied by RAPD banding pattern analysis

    Get PDF
    Genetic improvement of the medicinal plants depends upon the existence, nature and extent of the genetic variability available for manipulation. Genetic analysis with RAPD markers has been extensively used to determine genetic diversity among _Coleus sp_ and to identify the best quality for human consumption for its medicinal purpose. The objectives of the present study were to assess molecular variation among _C.amboinicus_, _C.aromaticus_ and _C.forskohlii_. and to determine the level of genetic similarity among them. We performed random amplification of polymorphic DNA (RAPD) analysis on three strains of _Coleus sp_. Random primers were used for the PCR. Electrophoresis on denaturing acrylamide gels improved RAPD reproducibility and increased the band number. The primer OPW 6 and OPW 7 gave reproducible results and the band profiles

    Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil

    Get PDF
    Objective of the study was to isolate heavy metal resistant bacteria from chromium-contaminated subsurface soil and investigate biosurfactant production and heavy metal bioremediation. Based on 16S rRNA gene sequence and phylogenetic analysis, the isolate was identified as Rahnella sp. RM. The biosurfactant production by heavy metal resistant Rahnella sp. RM was optimized using Box- Behnken design (BBD). The maximum emulsification activity was obtained 66% at 6% soybean meal in pH 7.0 and 33.5°C. The biosurfactant was characterized using Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF). The highest metal removal rates using the biosurfactant were found 74.3, 72.5, and 70.1%, respectively, at the 100 mg/L amended flasks at 48 h. This study indicated the biosurfactant from heavy metal resistant Rahnella sp. RM could be used as a potential tool to remediate the metals in contaminated environments

    Cottonseed Oilcake Extract Mediated Green Synthesis of Silver Nanoparticles and Its Antibacterial and Cytotoxic Activity

    Get PDF
    Agroindustrial byproduct mediated green synthesis of silver nanoparticles was carried out using cottonseed oilcake (CSOC) extract. The aqueous silver nitrate formed stable silver nanoparticles with CSOC extract as a reducing agent for Ag+ to Ag0. The synthesized nanoparticles were characterized using energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) techniques. The synthesized silver nanoparticles (AgNPs) (4 mM) significantly inhibited the growth of phytopathogens, Pseudomonas syringae pv. actinidiae and Ralstonia solanacearum. Further, cytotoxicity of AgNPs was evaluated using rat splenocyte cells. The splenocyte viability was decreased according to the increasing concentration of AgNPs and 90% of cell death was observed at 100 μg/mL

    A comparative study on bioactive constituents between wild and in vitro propagated Centella asiatica

    Get PDF
    Centella asiatica (Umbelliferae) has been used for centuries in Indian ayurvedic medicine for the treatment of a wide number of health disorders. The aim of this study was to estimate and compare the concentration of bioactive compounds between wild and in vitro propagated C. asiatica plants. A marked decrease in the total phenolic compounds, flavonoids, and ascorbic acid was observed between in vitro propagated and wild type plants collected from wet land habitat. The radical scavenging activity of the wild type plant extracts also varied with the habitats. This study clearly indicates that environmental factors play a crucial role in the plant metabolic activity and medicinal activity
    corecore