185 research outputs found

    Variation in morpho-physiological, biochemical and molecular responses of two Eucalyptus species under short-term water stress

    Get PDF
    The genus Eucalyptus occurs in a wide range of environmental conditions, including rainforests, subalpine, arid/semi-arid and moist temperate zones. It includes species with the capacity to cope with extremely low water potential. This study aims to screen water stress tolerance in two Eucalyptus species under nursery conditions. Inter-specific variation in morphological, physiological, biochemical and molecular parameters in two Eucalyptus species (E. tereticornis and E. camaldulensis) with contrasting levels of tolerance to progressive short term water-deprived condition was evaluated. Water stress reduced growth measured in terms of root:shoot ratio and specific leaf area (SLA), photosynthetic parameters, leaf water potential and relative water content (RWC) in both genotypes. Biochemical parameters including total sugars, phenol, phytohormones (indole acetic acid and abscisic acid) and proline were found to significantly increase during stress in both genotypes. Water responsive transcripts like osmotin and DREB/CBF registered significant expression variation in the two genotypes, suggesting their key role in regulating water stress tolerance in Eucalyptus

    {(1R,2R)-N,N′-Bis[2-(N-methyl­anilino)benzyl­idene]cyclo­hexane-1,2-diamine-κ2 N,N′}dichloridoiron(II)

    Get PDF
    In the title compound, [FeCl2(C34H36N4)], the FeII ion is coordinated by two Cl atoms and by two N atoms from a (1R,2R)-N,N′-bis[2-(N-methyl­anilino)benzyl­idene]cyclo­hexane-1,2-diamine ligand in a distorted tetra­hedral geometry. The mol­ecule has approximate C 2 point symmetry. The dihedral angles between the phenyl and benzene rings on either side of the ligand are 64.56 (14) and 65.61 (13)°

    Comparative catching efficiency of traditional prawn fishing gears in Pulicat lake of Tamil Nadu, India

    Get PDF
    303-310Prawn fishery in Pulicat Lake has a significant role in livelihood of the fishers, which is being harvested through different fishing gears. Here, we investigated the prawn-fishing gear and their catch composition. The information on various aspect about the gears was collected from the 48 respondents each month through pre-designed interview schedule by adopting random sampling. Results revealed that the quantity of prawn were higher in stake net (209.83 kg), followed by barriers (118.58 kg), drive-in-net (55.58 kg) tangle net (18.25 kg) and was statically significant at 5 %. It was estimated that more than half (52.16 %) of the total prawn catch in Pulicat Lake was obtained through stake net than the barriers (29.48 %), drive-in-net (13.82 %) and tangle net (4.54 %). The maximum quantity of prawn was obtained during the November and December in all the prawn-fishing gear (p < 0.05). This study concludes that non-selective fishing gears resulted in the abundant catch of juvenile fishes and crabs, need to be regulated mesh size, to support the conservation and sustainable harvest of the fishery resources in Pulicat Lake

    Fabrication of a Selective Sensor Amplification Probe Modified with Multi-Component Zn2SnO4/SnO2 Heterostructured Microparticles as a Robust Electrocatalyst for Electrochemical Detection of Antibacterial Drug Secnidazole

    Get PDF
    In this study, we synthesized heterostructured zinc stannate/tin oxide microparticles (ZTO/TO MPs) by a simple coprecipitation method and used them as an effective electrode material for the electrochemical detection of the antibacterial drug secnidazole (SCZ). The as-prepared ZTO/TO MPs were characterized by XRD, Raman, FE-SEM, HR-TEM, EDX, and XPS analyses. The physiochemical studies clearly proved that the fabricated ZTO/TO MPs were formed in a heterostructure phase without other impurities. A glassy carbon electrode modified with the synthesized ZTO/TO MPs showed an excellent and improved electrocatalytic activity in the electrochemical reduction of SCZ. Using differential pulse voltammetry (DPV), an impressive linear calibration range, extending from 0.01 to 193 μM, was observed, coupled with a detection limit of 0.0054 μM and a sensitivity of 0.055 μA/μM. In addition, the ZTO/TO MPs/GCE showed very good selectivity for the detection of SCZ in the presence of a number of biological, inorganic, and structurally related compounds. Finally, the ZTO/TO MPs/GCE was investigated for the analysis of SCZ in human blood serum samples. A very good recovery was obtained when spiking the blood serum with SCZ, highlighting the good applicability of the ZTO/TO MPs/GCE for the electrochemical analysis of SCZ in complex biological samples

    A Selective, Efficient and Environmentally Friendly Method for the Oxidative Cleavage of Glycols

    Get PDF
    A catalytic methodology for the oxidative cleavage of vicinal diols is described as an advantageous alternative in terms of the environmental impact on classical methods involving toxic oxidants. The novel strategy is based on the use of dioxomolybdenum(VI) complexes as catalysts and dimethyl sulfoxide (DMSO) as an oxidant and displays high selectivity and a broad scope for glycol cleavage. In addition, the developed system is also useful for the oxidation of acyloins to diketones.Ministerio de Economía y Competitividad (MINECO) and FEDER (CTQ2013-48937-C2-1-P) and Junta de Castilla y León (BU237U13

    Microstructural and mechanical characterisation of laser-welded high-carbon and stainless steel

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00170-015-7111-5Laser welding is becoming an important joining technique for welding of stainless steel to carbon steel and is extensively used across various sectors, including aerospace, transportation, power plants, electronics and other industries. However, welding of stainless steel to high-carbon steel is still at its early stage, predominantly due to the formation of hard brittle phases, which undermine the mechanical strength of the joint. This study reports a scientific investigation on controlling the brittle phase formation during laser dissimilar welding of high-carbon steel to stainless steel. Attempts have been made to tailor the microstructure and phase composition of the fusion zone through influencing the alloying composition and the cooling rate. Results show that the heat-affected zone (HAZ) within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. To reduce the hardness of the HAZ, a new heat treatment strategy was proposed and evaluated using a finite element analysis-based numerical simulation model. A series of experiments has been performed to verify the developed thermo-metallurgical finite element analysis (FEA) model, and a qualitative agreement of predicted martensitic phase distribution is shown to exist
    corecore