4 research outputs found

    Synthesis of iron chelates for remediation of iron deficiency in an alkaline and calcareous soil

    Get PDF
    The present study was aimed to investigate the using iron chelates viz., ferrous glycinate and ferrous citrate for the remediation of iron deficiency in alkaline and calcareous soil. The lab experiment was carried out to study the synthesis of Fe chelates by using organic and amino acid based chelating agents. The Fe chelates were synthesized based on 2:1 molar ratio of chelating agents and metal ions. The synthesized iron chelate was characterized by using Fourier transform infrared spectrophotometer (FT-IR). Finally, the synthesized amino acid and organic acid chelated iron were used to remediate the calcareous soil with black gram as a test crop. Iron content in black gram (above ground mass) tented to fluctuate at different growth stages. The highest shoot iron content of 325, 351 and 347 mg kg-1 at vegetative, flowering and harvest stages were recorded with 1% ferrous glycinate as foliar spraying on 25 and 45 Day after sowing (DAS). The root iron content was also higher in 1% ferrous glycinate as foliar spraying on 25 and 45 DAS. The current investigation affirmed that the utilizing different chelating agents like the ferrous glycinate were powerful than ferrous sulfate, which may build the iron substance and iron take-up of blackgram in various development stages

    Carbon management Index under different land uses of Conoor region of Western ghats in Tamil Nadu

    Get PDF
    The increased land-use change (LUC) from native lands to other land use at the Conoor region of western ghats in Tamil Nadu has severely declined soil carbon concentration.  Therefore to quantify this decline, Carbon Management Index (CMI) was worked out under major land uses {(Forest (FOR), cropland (CRP), tea plantation (TEA)} using total organic carbon (TOC) and carbon pools under varying degrees of lability {a) NLC (non-labile carbon) b) VLC (very labile carbon) c) LC (labile carbon) d) LLC (less labile carbon)}. Results portray that the carbon pools were significantly (p < 0.05) higher in FOR than in TEA and CRP. The contribution of active pools {(very labile carbon (VLC) and labile carbon (LC)} towards TOC was higher in TEA and CRP, whereas in FOR, the passive pool {(less labile carbon (LLC) and non-labile carbon (NLC)} was higher. TOC (0-45 cm) was concentrated on the surface soils of FOR (32.88 g kg-1), CRP (11.87 g kg-1) and TEA (18.84 g kg-1) and it gradually declined with the increase in depth. The decline in TOC was maximum between 0 – 15 and 15 – 30 cm depth in CRP (30.62%) and FOR (22.17%), whereas it was maximum (37.16%) between 15 -30 and 30 -45 cm depth in TEA. Therefore, LUC spotlights the degradation of carbon pools and its extent was quantified using the carbon management index (CMI). The CMI (0 – 45 cm) recorded at CRP (12.93) and TEA (32.62) signals the need for an implementation of carbon management strategies at Conoor to keep the soils alive and protect biodiversity
    corecore