91 research outputs found

    Production of Extracellular Laccase from Bacillus subtilis

    Get PDF
    Laccases are the model enzymes for multicopper oxidases and participate in several applications such as bioremediation, biopulping, textile, and food industries. Laccase producing bacterium, Bacillus subtilis MTCC 2414, was subjected to optimization by conventional techniques and was partially purified using ammonium salt precipitation method. The agroresidue substrates used for higher yield of laccase were rice bran and wheat bran. Maximum production was achieved at temperature 30°C (270 ± 2.78 U/mL), pH 7.0 (345 ± 3.14 U/mL), and 96 h (267 ± 2.64 U/mL) of incubation. The carbon and nitrogen sources resulted in high enzyme yield at 3% sucrose (275 ± 3.11 U/mL) and 3% peptone (352.2 ± 4.32 U/mL) for rice bran and 3% sucrose (247.4 ± 3.51 U/mL) and 3% peptone (328 ± 3.33 U/mL) for wheat bran, respectively. The molecular weights of partially purified laccase were 52 kDa for rice bran and 55 kDa for wheat bran. The laccase exhibited optimal activity at 70°C (260.3 ± 6.15 U/mL), pH 9.0 (266 ± 4.02 U/mL), and metal ion CuSO4 (141.4 ± 6.64) was found to increase the production. This is the first report that delivers the higher yield of laccase produced from B. subtilis MTCC 2414 using agroresidues as a potential substrate

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Full text link

    Declarative interface models for user interface construction tools: the MASTERMIND approach

    No full text
    Currently, building a user interface involves creating a large procedural program. Modelbased programming provides an alternative new paradigm. In the model-based paradigm, developers create a declarative model that describes the tasks that users are expected to accomplish with a system, the functional capabilities of a system, the style and requirements of the interface, the characteristics and preferences of the users, and the I/O techniques supported by the delivery platform. Based on the model, a much smaller procedural program then determines the behavior of the system. There are several advantages to this approach. The declarative model is a common representation that tools can reason about, enabling the construction of tools that automate various aspects of interface design, that assist system builders in the creation of the model, that automatically provide context sensitive help and other run-time assistance to users. The common model also allows the tools that operate on it t..

    Removable denture is a risk indicator for peri-implantitis and facilitates expansion of specific periodontopathogens: a cross-sectional study.

    No full text
    Background: The prevalence of peri-implantitis ranges between 7 and 38.4% depending on risk indicators such as smoking, diabetes mellitus, lack of periodontal maintenance program, and history or presence of periodontitis. Currently, the possible effect of the type of superstructure on peri-implant health is unclear. This cross-sectional study aims to investigate the influence of the superstructure on the prevalence of peri-implant mucositis, peri-implantitis and peri-implant dysbiosis. Methods: During a 32-month recruitment period dental implants were assessed to diagnose healthy peri-implant tissues, mucositis or peri-implantitis. The study included 1097 implants in 196 patients. Out of all peri-implantitis cases 20 randomly chosen submucosal biofilms from implants with fixed denture (FD) originating from 13 patients and 11 biofilms from implants with removable dentures (RD) originating from 3 patients were studied for microbiome analysis. Composition of transcriptionally active biofilms was revealed by RNAseq. Metatranscriptomic profiles were created for thirty-one peri-implant biofilms suffering from peri-implantitis and microbiome changes associated with superstructure types were identified. Results: 16.41% of the implants were diagnosed with peri-implantitis, 25.00% of implants with RD and 12.68% of implants with FD, respectively. Multivariate analysis showed a significant positive association on patient (p = < 0.001) and implant level (p = 0.03) between the prevalence of peri-implantitis and RD. Eight bacterial species were associated either with FD or RD by linear discriminant analysis effect size method. However, significant intergroup confounders (e.g. smoking) were present. Conclusions: Within the limitations of the present work, RDs appear to be a risk indicator for peri-implantitis and seem to facilitate expansion of specific periodontopathogens. Potential ecological and pathological consequences of shift in microbiome from RDs towards higher activity of Fusobacterium nucleatum subspecies animalis and Prevotella intermedia require further investigation

    Solar cells of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films prepared by chemical bath deposition method

    No full text
    620-624Solar cells based on kesterite-type Cu2ZnSnS4 have been successfully fabricated on ITO substrates by cost effective chemical bath deposition method. The structural properties of the material have been studied using X-ray diffraction pattern and it confirms the formation of Cu2ZnSnS4 with kesterite structure. The surface topography has been studied using atomic force microscope and the rms roughness of the film was found to be 3.2 nm. The chemical constituents present in the prepared films have been identified using energy dispersive X-ray analysis. The optical band gap energy of CZTS thin film was found to be 1.5 eV which is quite close to the optimum value required for solar cell application. The power conversion efficiency of fabricated Cu2ZnSnS4 based solar cell is 1.34%

    Influence of source concentration on structural and optical properties of SnO2 nanoparticles prepared by chemical precipitation method

    No full text
    In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band
    corecore