986 research outputs found
Particle number conservation in quantum many-body simulations with matrix product operators
Incorporating conservation laws explicitly into matrix product states (MPS)
has proven to make numerical simulations of quantum many-body systems much less
resources consuming. We will discuss here, to what extent this concept can be
used in simulation where the dynamically evolving entities are matrix product
operators (MPO). Quite counter-intuitively the expectation of gaining in speed
by sacrificing information about all but a single symmetry sector is not in all
cases fulfilled. It turns out that in this case often the entanglement imposed
by the global constraint of fixed particle number is the limiting factor.Comment: minor changes, 18 pages, 5 figure
Breeding for resistance to nematode infections in organic goat production in Germany – A way forward?
Organic goat production in Germany could benefit from genetic improvement strategies that take the resistance of goats to nematode infestations and the resilience and tolerance for infections into consideration. However, there still is an immense research need before such traits can be incorporated in a breeding program
Limiting Behaviour of the Mean Residual Life
In survival or reliability studies, the mean residual life or life expectancy
is an important characteristic of the model. Here, we study the limiting
behaviour of the mean residual life, and derive an asymptotic expansion which
can be used to obtain a good approximation for large values of the time
variable. The asymptotic expansion is valid for a quite general class of
failure rate distributions--perhaps the largest class that can be expected
given that the terms depend only on the failure rate and its derivatives.Comment: 19 page
Matrix product decomposition and classical simulation of quantum dynamics in the presence of a symmetry
We propose a refined matrix product state representation for many-body
quantum states that are invariant under SU(2) transformations, and indicate how
to extend the time-evolving block decimation (TEBD) algorithm in order to
simulate time evolution in an SU(2) invariant system. The resulting algorithm
is tested in a critical quantum spin chain and shown to be significantly more
efficient than the standard TEBD.Comment: 5 pages, 4 figure
Effects of mitochondrial dysfunction on the immunological properties of microglia
<p>Abstract</p> <p>Background</p> <p>Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells.</p> <p>Methods</p> <p>We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS-) induced microglial activation and the alternative, interleukin-4- (IL-4-) induced microglial activation in these mitochondrial toxin-treated microglial cells.</p> <p>Results</p> <p>We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1) and the counteraction of the LPS induced cytokine release.</p> <p>Conclusions</p> <p>Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases.</p
The Ethics of Corporate Governance
How should corporate directors determine what is the right decision? For at least the past 30 years the debate has raged as to whether shareholder value should take precedence over corporate social responsibility when crucial decisions arise. Directors face pressure, not least from ethical investors, to do the good thing when they seek to make the right choice. Corporate governance theory has tended to look to agency theory and the need of boards to curb excessive executive power to guide directors' decisions. While useful for those purposes, agency theory provides only limited guidance. Supplementing it with the alternatives - stakeholder theory and stewardship theory - tends to put directors in conflict with their legal obligations to work in the interests of shareholders. This paper seeks to reframe the discussion about corporate governance in terms of the ethical debate between consequential, teleological approaches to ethics and idealist, deontological ones, suggesting that directors are - for good reason - more inclined toward utilitarian judgments like those underpinning shareholder value. But the problems with shareholder value have become so great that a different framework is needed: strategic value, with an emphasis on long-term value creation judged from a decidedly utilitarian standpoint
Integrability breakdown in longitudinaly trapped, one-dimensional bosonic gases
A system of identical bosons with short-range (contact) interactions is
studied. Their motion is confined to one dimension by a tight lateral trapping
potential and, additionally, subject to a weak harmonic confinement in the
longitudinal direction. Finite delay time associated with penetration of
quantum particles through each other in the course of a pairwise
one-dimensional collision in the presence of the longitudinal potential makes
the system non-integrable and, hence, provides a mechanism for relaxation to
thermal equilibrium. To analyse this effect quantitatively in the limit of a
non-degenerate gas, we develop a system of kinetic equations and solve it for
small-amplitude monopole oscillations of the gas. The obtained damping rate is
long enough to be neglected in a realistic cold-atom experiment, and therefore
longitudinal trapping does not hinder integrable dynamics of atomic gases in
the 1D regime
Recommended from our members
Spatial housing economics: a survey
This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work
Fermi super-Tonks-Girardeau state for attractive Fermi gases in an optical lattice
We demonstrate that a kind of highly excited state of strongly attractive
Hubbard model, named of Fermi super-Tonks-Girardeau state, can be realized in
the spin-1/2 Fermi optical lattice system by a sudden switch of interaction
from the strongly repulsive regime to the strongly attractive regime. In
contrast to the ground state of the attractive Hubbard model, such a state is
the lowest scattering state with no pairing between attractive fermions. With
the aid of Bethe-ansatz method, we calculate energies of both the Fermi
Tonks-Girardeau gas and the Fermi super-Tonks-Girardeau state of spin-1/2
ultracold fermions and show that both energies approach to the same limit as
the strength of the interaction goes to infinity. By exactly solving the quench
dynamics of the Hubbard model, we demonstrate that the Fermi
super-Tonks-Girardeau state can be transferred from the initial repulsive
ground state very efficiently. This allows the experimental study of properties
of Fermi super-Tonks-Girardeau gas in optical lattices.Comment: 7 pages, 7 figure
One and two-center processes in high-order harmonic generation in diatomic molecules: influence of the internuclear separation
We analyze the influence of different recombination scenarios, involving one
or two centers, on high-order harmonic generation (HHG) in diatomic molecules,
for different values of the internuclear separation. We work within the
strong-field approximation, and employ modified saddle-point equations, in
which the structure of the molecule is incorporated. We find that the
two-center interference patterns, attributed to high-order harmonic emission at
spatially separated centers, are formed by the quantum interference of the
orbits starting at a center and finishing at a different center in the molecule with those starting and ending at a same center
Within our framework, we also show that contributions starting at different
centers exhibit different orders of magnitude, due to the influence of
additional potential-energy shifts. This holds even for small internuclear
distances. Similar results can also be obtained by considering single-atom
saddle-point equations and an adequate choice of molecular prefactors.Comment: 8 pages, 5 figure
- …