2 research outputs found

    Microstructure and magnetic properties of as-cast Ni2MnGa rods and tubes solidified by suction casting

    Get PDF
    Ni2MnGa cylinders and tubes are solidified in water chilled copper molds, a few millimeters in external diameter and 5 cm long, by the suction casting technique. At room temperature, all samples are in cubic austenitic phase. Microstructure and crystallographic texture of the as-cast rods and tubes are characterized by XRD, SEM, EBSD and TEM. Because of the heat extraction geometry samples exhibit a strong texture, with the [100] direction preferentially oriented in the radial direction, together with a random distribution on the long axis. This texture is more marked in the tubes. XRD and TEM results indicate that the major austenitic phase is fcc, with L21 order. A minority volume of the equilibrium B2′ disordered phase is detected by the presence of two close Curie temperatures in cylinders and tubes 2 mm in external diameter, but not when this diameter is near 1 mm. Precipitates of the stable compounds α-Mn(S,Se), with a NaCl-type structure, and monoclinic P4S5 are observed in all the samples. Cylinders and tubes in austenitic phase are magnetically soft. Hysteresis loops in martensitic phase exhibit local steps associated to a magnetization mechanism involving twin boundary displacement, indicating that a field-induced variant reordering takes place. The switching field Hsw, corresponding to the magnetization step observed, is identified as the field at which twin boundaries become mobile. The measured values of 0.37 T–0.49 T are consistent with those corresponding to the onset of Type I twin boundaries displacement in 5 M martensite, with an equivalent threshold stress of 1 MP.Fil: Pozo Lopez, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Condo, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Limandri, Silvina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Mutal, Ruben Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Fabietti, Luis Maria Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin

    Influencia de la atmosfera de calentamiento en la formación de nanoespecies en SBA15 por medio de impregnación con Fe(NO3)3.9H2O

    No full text
    El tamiz molecular mesoporoso libre de metales SBA-15 se sintetizó como hospedador de cationes metálicos mediante el método de impregnación húmeda usando una solución etanolica y un precursor metálico para alcanzar una carga nominal de Fe del 10% en peso. Se usó como precursor Fe(NO3)3:9H2O, luego se dividió el material en dos aícuotas. Se sometieron a calentamiento a 500ºC durante 6 horas en atmósfera de N2 (S-N2) y en aire (S-Aire) respectivamente. Para comprobar la formación de distintas especies de hierro según el método utilizado se midieron las propiedades magnéticas de ambas muestras. La medida de ciclos de histéresis a temperatura ambiente muestra que la magnetización es notablemente mayor para la muestra calentada en atmosfera inerte. Por la metodología de síntesis se descarta la posibilidad de la formación de magnetita, en esta muestra, por lo que se presupone la formación de maghemita o hematita. Luego, la dependencia de la magnetización respecto de la temperaturapor medio de protocolos ZFC y FC, expone que la muestra S-Aire forma nanoespecies de hierro de tamaño sucientemente pequeños para entrar en régimen superparamagnético a temperatura ambiente mientras que las formadas en la muestra S-N2 son de gran variedad de tamaños. Del análisis de estas mediciones se corroboró la variación en las distintas especies metálicas formadas dependiendo de la atmosfera de calentamiento con las consecuentes variaciones en sus propiedades. Esto conlleva a potenciales aplicaciones en distintas áreas de la nanotecnología evidenciado en un aumento en el interés en el estudio de las propiedades magnéticas a nanoescala.Fil: Cuello, Natalia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaFil: Mutal, Ruben Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: García, Sebastián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Elías, Verónica Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaFil: Oliva, Marcos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina106º Reunión de la Asociación Física ArgentinaCórdobaArgentinaAsociación Física Argentin
    corecore