201 research outputs found

    Whirl and whip: Rotor/bearing stability problems

    Get PDF
    A mathematical model of a symmetric rotor supported by one rigid and one fluid lubricated bearing is proposed. The rotor model is represented by generalized (modal) parameters of its first bending mode. The rotational character of the bearing fluid force is taken into account. The model yields synchronous vibrations due to rotor unbalance as a particular solution of the equations of motion, rotor/bearing system natural frequencies and corresponding self-excited vibrations known as oil whirl and oil whip. The stability analysis yields rotative speed threshold of stability. The model also gives the evaluation of stability of the rotor synchronous vibrations. In the first balance resonance speed region two more thresholds of stability are yielded. The width of this stability region is directly related to the amount of rotor unbalance. The results of the analysis based on this model stand with very good agreement with field observations of rotor dynamic behavior and the experimental results

    Orbits: Computer simulation

    Get PDF
    In rotating machinery dynamics an orbit (Lissajous curve) represents the dynamic path of the shaft centerline motion during shaft rotation and resulting precession. The orbit can be observed with an oscilloscope connected to XY promixity probes. The orbits can also be simulated by a computer. The software for HP computer simulates orbits for two cases: (1) Symmetric orbit with four frequency components with different radial amplitudes and relative phase angles; and (2) Nonsymmetric orbit with two frequency components with two different vertical/horizontal amplitudes and two different relative phase angles. Each orbit carries a Keyphasor mark (one-per-turn reference). The frequencies, amplitudes, and phase angles, as well as number of time steps for orbit computation, have to be chosen and introduced to the computer by the user. The orbit graphs can be observed on the computer screen

    Stability evaluation of rotor/bearing system

    Get PDF
    A stability study of rotor/bearing systems is presented. Even though it was limited to study of a fully lubricated bearing subject to oil whirl, and further limited to low eccentricity region for linearity and with only one type of lubricant, it can be seen that the perturbation methodology, together with the sorting of the impedance terms into direct and quadrature with respect to input force can be very useful to the general study of stability. Further, the concept of active feedback should assist to increase knowledge in rotor system stability. While there remains a large amount of study to be accomplished, perhaps some more tools are available to assist this field of analysis

    Why have hydrostatic bearings been avoided as a stabilizing element for rotating machines

    Get PDF
    The advantages are discussed of hydrostatic, high pressure bearings as providers of higher margin of stability to the rotor/bearing systems. It is apparent that deliberate use of hydrostatic bearing high pressure lubricated (any gas or liquid) can easily be used to build higher stability margin into rotating machinery, in spite of the thirty years bias against high pressure lubrication. Since this supply pressure is controllable (the Direct Dynamic Stiffness at lower eccentricity is also controllable) so that within some rotor system limits, the stability margin and dynamic response of the rotor system is more readily controllable. It may be possible to take advantage of this effect in the various seals, as well as the bearings, to assist with stability margin and dynamic response of rotating machinery. The stability of the bearing can be additionally improved by taking advantage of the anti-swirling concept. The high pressure fluid supply inlets should be located tangentially at the bearing circumference and directed against rotation. The incoming fluid flow creates stability by reducing the swirling rate

    Role of circumferential flow in the stability of fluid-handling machine rotors

    Get PDF
    The recent studies of the dynamic stiffness properties of fluid lubricated bearing and seals by the authors have yielded most of the generalized characteristics discussed and used in this paper. They include bearing and seal nonlinear fluid film properties associated with stiffness, damping, and fluid average circumferential velocity ratio. Analytical relationships yield the rotor system's dynamic stiffness characteristics. This paper shows the combination of these data to provide the fluid-induced rotor stability equations

    Identification of bearing and seal dynamic stiffness parameters

    Get PDF
    The results are presented of two simple tests, mainly steady state load test and squeeze film test, for establishing the coefficients of bearings and seals. It also discusses the methodology of the tests and some observed conclusions from the obtained data. Perturbation testing results are given as an example of verification and proof of validity of the two previous tests

    Instability in hydraulic machines demonstration rig

    Get PDF
    In fluid flow machines, the working fluid involved in rotative motion due to shaft rotation significantly modifies the rotor synchronous response. This can result in the rotor maintaining the high vibration amplitude that occurs at resonance over an extended rotative speed range. The phase changes in this range are typically very small. The fluid may also create rotor instability, i.e., subsynchronous self-excited vibrations, when the rotative speed is sufficiently high. This rotor instability is often related and increases with higher rotor unbalance (Opposite to other types of instability such as oil whirl/whip, internal friction, etc.). The rotor rig demonstrates typical dynamic behavior of hydraulic machines. At lower speeds the effect of amplitude/phase mentioned above is noticeable; at higher speeds the subsynchronous instability occurs

    Measurement of rotor system dynamic stiffness by perturbation testing

    Get PDF
    Specific aspects of the application of Modal Analysis to rotating machines are discussed. For lowest mode analysis, the circular force perturbation testing gives the best results. Examples of application are presented

    Rotor internal friction instability

    Get PDF
    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects

    Dynamic stiffness characteristics of high eccentricity ratio bearings and seals by perturbation testing

    Get PDF
    The complex behavior of cylindrical bearings and seals that are statically loaded to eccentricities in excess of 0.7 are examined. The stiffness algorithms as a function of static load are developed from perturbation methodology by empirical modeling
    corecore