15 research outputs found

    Anaerobic membrane bioreactors for sludge digestion: Current status and future perspectives

    No full text
    Excess sewage sludge in wastewater treatment plants (WWTPs) is regarded the key energy source for achieving energy neutral WWTPs. The anaerobic digestion process transforms sludge-organic matter into methane, which subsequently can be used for heat and electricity production. Conventional anaerobic digesters (ADs) have been used for sludge treatment for many decades, requiring high energy and providing poor effluent quality. Anaerobic membrane bioreactor (AnMBR) technology exhibits a promising option for treatment of high solids concentration streams including sludge. AnMBRs result in an increase in digestion efficiency and enhancement in effluent quality at small footprints. AnMBRs have the potential to reduce capital and operational costs, and produce more energy in comparison to conventional ADs. Thus, energy neutral or positive operation can be achieved with AnMBRs. Besides, nutrient recovery or direct use of permeate will become more feasible in AnMBRs compared to use of sludge supernatant in ADs. However, membrane fouling can limit the feasibility of AnMBRs for sludge treatment, which requires further research. This review paper critically evaluates the current status of AnMBR technology for municipal sludge treatment discussing the effect of different factors on treatment and membrane filtration performances. Furthermore, future research opportunities to enhance applicability of this technology are addressed. (Figure presented.).Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Sanitary Engineerin

    The flow pattern effects of hydrodynamic cavitation on waste activated sludge digestibility

    No full text
    The disintegration of raw sludge is of importance for enhancing biogas production and facilitates the degradation of substrates for microorganisms so that the efficiency of digestion can be increased. In this study, the effect of hydrodynamic cavitation (HC) as a pretreatment approach for waste activated sludge (WAS) was investigated at two upstream pressures (0.83 and 1.72 MPa) by using a milli-scale apparatus which makes sludge pass through an orifice with a restriction at the cross section of the flow. The HC probe made of polyether ether ketone (PEEK) material was tested using potassium iodide solution and it was made sure that cavitation occurred at the selected pressures. The analysis on chemical effects of HC bubbles collapse suggested that not only cavitation occurred at low upstream pressure, i.e., 0.83 MPa, but it also had high intensity at this pressure. The pretreatment results of HC implementation on WAS were also in agreement with the chemical characterization of HC collapse. Release of soluble organics and ammonium was observed in the treated samples, which proved the efficiency of the HC pretreatment. The methane production was improved during the digestion of the treated samples compared to the control one. The digestion of treated WAS sample at lower upstream pressure (0.83 MPa) resulted in higher methane production (128.4 mL CH4/g VS) compared to the treated sample at higher upstream pressure (119.1 mL CH4/g VS) and control sample (98.3 mL CH4/g VS). Thus, these results showed that the HC pretreatment for WAS led to a significant increase in methane production (up to 30.6%), which reveals the potential of HC in full-scale applications

    Coupling high-rate activated sludge process with aerobic granular sludge process for sustainable municipal wastewater treatment

    No full text
    Achieving a neutral/positive energy balance without compromising discharge standards is one of the main goals of wastewater treatment plants (WWTPs) in terms of sustainability. Aerobic granular sludge (AGS) technology promises high treatment performance with low energy and footprint requirement. In this study, high-rate activated sludge (HRAS) process was coupled to AGS process as an energy-efficient pre-treatment option in order to increase energy recovery from municipal wastewater and decrease the particulate matter load of AGS process. Three different feeding strategies were applied throughout the study. AGS system was fed with raw municipal wastewater, with the effluent of HRAS process, and with the mixture of the effluent of HRAS process and raw municipal wastewater at Stage 1, Stage 2 and Stage 3, respectively. Total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total phosphorus (TP) concentrations in the effluent were less than 10 mg/L, 60 mg/L, 0.4 mg/L, and 1.3 mg/L respectively at all stages. Fluctuations were observed in the denitrification performance due to changes in the influent COD/total nitrogen (TN) ratio. This study showed that coupling HRAS process with AGS process by feeding the AGS process with the mixture of HRAS process effluent and raw municipal wastewater could be an appropriate option for both increasing the energy recovery potential of WWTPs and enabling high effluent quality.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Environmental Biotechnolog

    Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota

    No full text
    Anaerobic digestion (AD) has been commercially operated worldwide in full scale as a resource recovery technology underpinning a circular economy. However, problems such as a long start-up time, or system instability, have been reported in response to operational shocks. These issues are usually linked to the dynamics of the functional microbiota in AD. Exploring the microbiota-functionality nexus (MFN) could be pivotal to understand the reasons behind these difficulties, and hence improving AD performance. Here we present a systematic MFN study based on 138 samples taken from 20 well-profiled lab-scale AD reactors operated for up to two years. All the reactors were operated in the same lab within the same period of time using the same methodology to harvest physio-chemical and molecular data, including key monitoring parameters, qPCR, and 16S sequencing results. The results showed a core bacterial microbiota prevailing in all reactor types, including Bacillus, Clostridium, Bacteroides, Eubacterium, Cytophaga, Anaerophaga, and Syntrophomonas, while various methanogens dominated different communities due to different inocula origins, reactor temperatures, or salinity levels. This core bacterial microbiota well correlated with biogas production (Pearson correlation coefficient of 0.481, p &lt; 0.0001). Such strong correlation was even comparable to that between the biogas production and the methanogenic 16S rRNA gene content (Pearson correlation coefficient of 0.481, p &lt; 0.0001). The results indicated that AD performance only modestly correlated with microbial diversity, a key governing factor. AD microbiota was neither functionally redundant nor plastic, and a high variety in communities can exhibit a strong difference in reactor performance. Our study demonstrates the importance of a core bacterial microbiota in AD and supports inspiring considerations for design, bioaugmentation, and operational strategies of AD reactors in the future.</p

    Impact of primary treatment methods on sludge characteristics and digestibility, and wastewater treatment plant-wide economics

    No full text
    Biogas production from anaerobic sludge digestion plays a central role for wastewater treatment plants to become more energy-efficient or even energy-neutral. Dedicated configurations have been developed to maxi-mize the diversion of soluble and suspended organic matter to sludge streams for energy production through anaerobic digestion, such as A-stage treatment or chemically enhanced primary treatment (CEPT) instead of primary clarifiers. Still, it remains to be investigated to what extent these different treatment steps affect the sludge characteristics and digestibility, which may also impact the economic feasibility of the integrated systems. In this study, a detailed characterization has been performed for sludge obtained from primary clarification (primary sludge), A-stage treatment (A-sludge) and CEPT. The characteristics of all sludges differed significantly from each other. The organic compounds in primary sludge consisted mainly of 40% of carbohydrates, 23% of lipids, and 21% of proteins. A-sludge was characterized by a high amount of proteins (40%) and a moderate amount of carbohydrates (23%), and lipids (16%), while in CEPT sludge, organic compounds were mainly 26% of proteins, 18% of carbohydrates, 18% of lignin, and 12% of lipids. The highest methane yield was obtained from anaerobic digestion of primary sludge (347 +/- 16 mL CH4/g VS) and A-sludge (333 +/- 6 mL CH4/g VS), while it was lower for CEPT sludge (245 +/- 5 mL CH4/g VS). Furthermore, an economic evaluation has been carried out for the three systems, considering energy consumption and recovery, as well as effluent quality and chemical costs. Energy consumption of A-stage was the highest among the three configurations due to aeration energy demand, while CEPT had the highest operational costs due to chemical use. Energy surplus was the highest by the use of CEPT, resulting from the highest fraction of recovered organic matter. By considering the effluent quality of the three systems, CEPT had the highest benefits, followed by A-stage. Integration of CEPT or A-stage, instead of primary clarification in existing wastewater treatment plants, would potentially improve the effluent quality and energy recovery

    Primary and A-sludge treatment by anaerobic membrane bioreactors in view of energy-positive wastewater treatment plants

    No full text
    Energy-rich sludge can be obtained from primary clarifiers preceding biological reactors. Alternatively, the incoming wastewater can be sent to a very-high-loaded activated sludge system, i.e., a so-called A-stage. However, the effects of applying an A-stage instead of a primary clarifier, on the subsequent sludge digestion for long-term operation is still unknown. In this study, biogas production and permeate quality, and filterability characteristics were investigated in a lab-scale anaerobic membrane bioreactor for primary sludge and A-stage sludge (A-sludge) treatment. A higher specific methane yield was obtained from digestion of A-sludge compared to primary sludge. Similarly, specific methanogenic activity was higher when the anaerobic membrane bioreactor was fed with A-sludge compared to primary sludge. Plant-wide mass balance analysis indicated that about 35% of the organic matter in wastewater was recovered as methane by including an A-stage, compared to about 20% with a primary clarifier
    corecore