7,270 research outputs found

    Part of the D - dimensional Spiked harmonic oscillator spectra

    Full text link
    The pseudoperturbative shifted - l expansion technique PSLET [5,20] is generalized for states with arbitrary number of nodal zeros. Interdimensional degeneracies, emerging from the isomorphism between angular momentum and dimensionality of the central force Schrodinger equation, are used to construct part of the D - dimensional spiked harmonic oscillator bound - states. PSLET results are found to compare excellenly with those from direct numerical integration and generalized variational methods [1,2].Comment: Latex file, 20 pages, to appear in J. Phys. A: Math. & Ge

    Impact of Si nanocrystals in a-SiOx<Er> in C-Band emission for applications in resonators structures

    Full text link
    Si nanocrystals (Si-NC) in a-SiOx were created by high temperature annealing. Si-NC samples have large emission in a broadband region, 700nm to 1000nm. Annealing temperature, annealing time, substrate type, and erbium concentration is studied to allow emission at 1550 nm forsamples with erbium. Emission in the C-Band region is largely reduced by the presence of Si-NC. This reduction may be due to less efficient energy transfer processes from the nanocrystals than from the amorphous matrix to the Er3+ ions, perhaps due to the formation of more centro-symmetric Er3+ sites at the nanocrystal surfaces or to very different optimal erbium concentrations between amorphous and crystallized samples.Comment: 3 pages, 4 figure

    Non-Hermitian von Roos Hamiltonian's η\eta-weak-pseudo-Hermiticity, isospectrality and exact solvability

    Full text link
    A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η\eta-weak-pseudo-Hermitian Hamiltonians. Using a Liouvillean-type change of variables, the η\eta-weak-pseudo-Hermitian von Roos Hamiltonians H(x) are mapped into the traditional Schrodinger Hamiltonian form H(q), where exact isospectral correspondence between H(x) and H(q) is obtained. Under a user-friendly position dependent mass settings, it is observed that for each exactly-solvable η\eta-weak-pseudo-Hermitian reference-Hamiltonian H(q)there is a set of exactly-solvable η\eta-weak-pseudo-Hermitian isospectral target-Hamiltonians H(x). A non-Hermitian PT-symmetric Scarf II and a non-Hermitian periodic-type PT-symmetric Samsonov-Roy potentials are used as reference models and the corresponding η\eta-weak-pseudo-Hermitian isospectral target-Hamiltonians are obtained.Comment: 11 pages, no figures

    d-Dimensional generalization of the point canonical transformation for a quantum particle with position-dependent mass

    Full text link
    The d-dimensional generalization of the point canonical transformation for a quantum particle endowed with a position-dependent mass in Schrodinger equation is described. Illustrative examples including; the harmonic oscillator, Coulomb, spiked harmonic, Kratzer, Morse oscillator, Poschl-Teller and Hulthen potentials are used as reference potentials to obtain exact energy eigenvalues and eigenfunctions for target potentials at different position-dependent mass settings.Comment: 14 pages, no figures, to appear in J. Phys. A: Math. Ge

    Bound - states for truncated Coulomb potentials

    Full text link
    The pseudoperturbative shifted - ll expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.Comment: TEX file, 22 pages. To appear in J. Phys. A: Math. & Ge
    • …
    corecore