118 research outputs found

    Structural and electrical properties of annealed Ge2Sb2Te5 films grown on flexible polyimide

    Get PDF
    The morphological, structural, and electrical properties of as-grown and annealed Ge2Sb2Te5 (GST) layers, deposited by RF-sputtering on flexible polyimide, were studied by means of optical microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and electrical characterization. The X-ray diffraction annealing experiments showed the structural transformation of GST layers from the as-grown amorphous state into their crystalline cubic and trigonal phases. The onset of crystallization of the GST films was inferred at about 140 degrees C. The vibrational properties of the crystalline GST layers were investigated via Raman spectroscopy with mode assignment in agreement with previous works on GST films grown on rigid substrates. The electrical characterization revealed a good homogeneity of the amorphous and crystalline trigonal GST with an electrical resistance contrast of 8 x 10(6)

    SiO2 nanoparticles as new repairing treatments toward the Pietraforte sandstone in Florence renaissance buildings

    Get PDF
    In this work, the consolidation efficiency of SiO2 nanoparticles (synthesized in the Chemistry laboratories at the Tor Vergata University of Roma) was tested on Pietraforte sandstone surfaces belonging to the bell tower of San Lorenzo (Florence, Italy) and was fully investigated. Nanoparticles (synthesized in large-scale mass production) have been characterized by XRD—X-Ray Diffraction; Raman and FTIR—Fourier Transform Infrared spectroscopy; SEM—Scanning Electron Microscopy; while the Pietraforte sandstone morphology was examined by Porosimetry, capillary absorption test, surface hardness test, drilling resistance and tensile strength. The colorimetric measurements were also performed to characterize the optical modification exhibited by Pietraforte sandstones, especially after the SiO2 treatments. Our results show that applying to the Pietraforte, the new consolidating agent based on SiO2 nanoparticles, has several advantages, as they are more resistant to perforation, wear, and abrasion even long range (for long times of exposure and consolidating exercise against Florentine sandstone), compared to the CaCO3 nanoparticles (tested in our previous paper), which instead show excellent performance but only close to their first application. This means that over time, their resistance to drilling decreases, they wear much more easily (compared to SiO2 -treated sandstone), and tend to exhibit quite a significant surface abrasion phenomena. The experimental results highlight that the SiO2 consolidation efficiency on this kind of Florentine Pietraforte sandstone (having low porosity and a specific calcitic texture) seems to be higher in terms of water penetration protection, superficial cohesion forces, and an increase in surface resistance. Comparing the performance of SiO2 nanoparticles with commercial consolidants in solvents such as Estel 1000 (tested here), we demonstrate that: (A) the restorative effects are obtained with a consolidation time over one week, significantly shorter when compared to the times of Estel 1000, exceeding 21 days; (B) SiO2 nanoparticles perform better than Estel 1000 in terms of cohesion forces, also ensuring excellent preservation of the optical and color properties of the parent rock (without altering it after application)

    Decreased levels of metalloproteinase-9 and angiogenic factors in skin lesions of patients with psoriatic arthritis after therapy with anti-TNF-α

    Get PDF
    BACKGROUND: Inflammation represents an early and key event in the development of both the cutaneous psoriasis and psoriatic arthritis. Compelling evidences indicate that the production of TNF-α plays a central role in psoriasis by sustaining the inflammatory process in the skin as well as in the joints. Among the multiple effects produced by TNF-α on keratinocytes, the induction of matrix metalloproteinase-9 (MMP-9), a collagenase implicated in joint inflammatory arthritis which acts as an angiogenesis promoting factor, might represent a key mechanism in the pathogenesis of the disease. Aims of the present study were to investigate a) the role of MMP-9 in the development of psoriasis by assessing the presence of MMP-9 in lesional skin and in sera of psoriatic patients; b) the association of MMP-9 with the activity of the disease; c) the relationship between MMP-9 and TNF-α production. METHODS: Eleven psoriatic patients, clinically presenting joint symptoms associated to the cutaneous disease, were included in a therapeutic protocol based on the administration of anti-TNF-α monoclonal antibody (Infliximab). Sera and skin biopsies were collected before treatment and after 6 weeks of therapy. Tissues were kept in short term cultures and production soluble mediators such as TNF-α, MMP-9, MMP-2, VEGF and E-Selectin, which include angiogenic molecules associated to the development of plaque psoriasis, were measured in the culture supernatants by immunoenzymatic assays (ng/ml or pg/ml per mg of tissue). MMP-9 concentrations were also measured in the sera. The cutaneous activity of disease was evaluated by the Psoriasis Area and Severity Index (PASI). RESULTS: Clinical and laboratory assessment indicated that all but one patients had a significant improvement of the PASI score after three months of therapy. The clinical amelioration was associated to a significant decrease of MMP-9 (P = 0.017), TNF-α (P = 0.005) and E-selectin (P = 0.018) levels, spontaneously released by lesional biopsies before and after therapy. In addition, significant correlations were found between the PASI measurements and TNF-α (r(2 )= 0.33, P = 0.005), MMP-9 (r(2 )= 0.25, P = 0.017), E-selectin (r(2 )= 0.24, P = 0.018) production. MMP-9 levels were significantly correlated with those of TNF-α (r(2 )= 0.30, P = 0.008). A significant decrease of MMP-9 in the sera, associated to the clinical improvement was also found. CONCLUSION: Our findings show the existence of a direct relationship between MMP-9 and TNF-α production strongly suggesting that MMP-9 may play a key role in the skin inflammatory process in psoriasis

    Learning models for classifying Raman spectra of genomic DNA from tumor subtypes

    Get PDF
    An early and accurate detection of different subtypes of tumors is crucial for an effective guidance to personalized therapy and in predicting the ability of tumor to metastasize. Here we exploit the Surface Enhanced Raman Scattering (SERS) platform, based on disordered silver coated silicon nanowires (Ag/SiNWs), to efficiently discriminate genomic DNA of different subtypes of melanoma and colon tumors. The diagnostic information is obtained by performing label free Raman maps of the dried drops of DNA solutions onto the Ag/NWs mat and leveraging the classification ability of learning models to reveal the specific and distinct physico-chemical interaction of tumor DNA molecules with the Ag/NW, here supposed to be partly caused by a different DNA methylation degree

    WWOX expression in different histologic types and subtypes of non-small cell lung cancer.

    Get PDF
    Abstract Purpose: Non–small cell lung cancer (NSCLC) has heterogeneous histopathologic classification and clinical behavior and very low survival rate. WWOX (WW domain-containing oxidoreductase) is a tumor suppressor gene, and its expression is altered in several cancers. The purpose of this study is to better define the role of WWOX in NSCLC tumorigenesis and progression by determining its pathogenetic and prognostic significance. Experimental Design: WWOX protein expression was evaluated by immunohistochemistry in 170 patients with NSCLC (101 squamous cell carcinomas, 66 adenocarcinomas, 3 large cell carcinomas) and was correlated with histopathologic (histotype, subtype, grade, tumor-node-metastasis, stage, index of cell proliferation Ki67/MIB1) and clinical (age, gender, local recurrences, distant metastases, overall survival, and disease-free survival) characteristics. Results: WWOX expression was absent/reduced in 84.9% of NSCLCs, whereas it was normal in 80.5% of adjacent normal lung tissues. WWOX expression was strongly associated with tumor histology (P = 1.1 × 10−5) and histologic grade (P = 0.0081): the percentage of cases with absent/strongly reduced WWOX expression was higher in squamous cell carcinomas and in poorly differentiated tumors. Regarding adenocarcinoma, bronchioloalveolar pattern showed normal WWOX expression in 62.5% of the cases, whereas in solid and acinar patterns, a prevalence of cases with absent/very low WWOX expression was observed (79.2% and 50%, respectively). Finally, weak WWOX staining intensity was related to the high index of cell proliferation (P = 0.0012). Conclusions: Our results suggest that the loss of WWOX expression plays different roles in tumorigenesis of distinct histotypes and subtypes of NSCLC and is related to high aggressiveness (G3; high proliferating activity) of tumors

    Circulating Skeletal Troponin During Weaning From Mechanical Ventilation and Their Association to Diaphragmatic Function: A Pilot Study

    Get PDF
    Background: Patients with acute respiratory failure (ARF) may need mechanical ventilation (MV), which can lead to diaphragmatic dysfunction and muscle wasting, thus making difficult the weaning from the ventilator. Currently, there are no biomarkers specific for respiratory muscle and their function can only be assessed trough ultrasound or other invasive methods. Previously, the fast and slow isoform of the skeletal troponin I (fsTnI and ssTnI, respectively) have shown to be specific markers of muscle damage in healthy volunteers. We aimed therefore at describing the trend of skeletal troponin in mixed population of ICU patients undergoing weaning from mechanical ventilation and compared the value of fsTnI and ssTnI with diaphragmatic ultrasound derived parameters.Methods: In this prospective observational study we enrolled consecutive patients recovering from acute hypoxemic respiratory failure (AHRF) within 24 h from the start of weaning. Every day an arterial blood sample was collected to measure fsTnI, ssTnI, and global markers of muscle damage, such as ALT, AST, and CPK. Moreover, thickening fraction (TF) and diaphragmatic displacement (DE) were assessed by diaphragmatic ultrasound. The trend of fsTnI and ssTnI was evaluated during the first 3 days of weaning.Results: We enrolled 62 consecutive patients in the study, with a mean age of 67 ± 13 years and 43 of them (69%) were male. We did not find significant variations in the ssTnI trend (p = 0.623), but fsTnI significantly decreased over time by 30% from Day 1 to Day 2 and by 20% from Day 2 to Day 3 (p < 0.05). There was a significant interaction effect between baseline ssTnI and DE [F(2) = 4.396, p = 0.015], with high basal levels of ssTnI being associated to a higher decrease in DE. On the contrary, the high basal levels of fsTnI at day 1 were characterized by significant higher DE at each time point.Conclusions: Skeletal muscle proteins have a distinctive pattern of variation during weaning from mechanical ventilation. At day 1, a high basal value of ssTnI were associated to a higher decrease over time of diaphragmatic function while high values of fsTnI were associated to a higher displacement at each time point

    Mesoscopic 3D Charge Transport in Solution-Processed Graphene-Based Thin Films: A Multiscale Analysis

    Get PDF
    Graphene and related 2D material (GRM) thin films consist of 3D assembly of billions of 2D nanosheets randomly distributed and interacting via van der Waals forces. Their complexity and the multiscale nature yield a wide variety of electrical characteristics ranging from doped semiconductor to glassy metals depending on the crystalline quality of the nanosheets, their specific structural organization ant the operating temperature. Here, the charge transport (CT) mechanisms are studied that are occurring in GRM thin films near the metal-insulator transition (MIT) highlighting the role of defect density and local arrangement of the nanosheets. Two prototypical nanosheet types are compared, i.e., 2D reduced graphene oxide and few-layer-thick electrochemically exfoliated graphene flakes, forming thin films with comparable composition, morphology and room temperature conductivity, but different defect density and crystallinity. By investigating their structure, morphology, and the dependence of their electrical conductivity on temperature, noise and magnetic-field, a general model is developed describing the multiscale nature of CT in GRM thin films in terms of hopping among mesoscopic bricks, i.e., grains. The results suggest a general approach to describe disordered van der Waals thin films
    corecore