9 research outputs found

    SIZE-DEPENDENT PHONON-ASSISTED ANTI-STOKES PHOTOLUMINESCENCE IN NANOCRYSTALS OF ORGANOMETAL PEROVSKITES

    Get PDF
    Anti-Stokes photoluminescence (ASPL), which is an up-conversion phonon-assisted process of the radiative recombination of photoexcited charge carriers, was investigated in methylammonium lead bromide (MALB) perovskite nanocrystals (NCs) with mean sizes that varied from about 6 to 120 nm. The structure properties of the MALB NCs were investigated by means of the scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. ASPL spectra of MALB NCs were measured under near-resonant laser excitation with a photon energy of 2.33 eV and they were compared with the results of the photoluminescence (PL) measurements under nonresonant excitation at 3.06 eV to reveal a contribution of phonon-assisted processes in ASPL. MALB NCs with a mean size of about 6 nm were found to demonstrate the most efficient ASPL, which is explained by an enhanced contribution of the phonon absorption process during the photoexcitation of small NCs. The obtained results can be useful for the application of nanocrystalline organometal perovskites in optoelectronic and all-optical solid-state cooling devices

    Dedicated to the memory of scientist and developer of photovoltaics in Kazakhstan, obituary

    No full text
    Al-Farabi Kazakh National University, Faculty of Physics and Technology Institute of Experimental and Theoretical Physics National Nanotechnological Laboratory of Open Typ

    Andrey Stepanovich Drobyshev, scientist who developed cryophysics in Kazakstan, obituary (11.09.1950 – 20.12.2018)

    No full text
    Andrey Stepanovich Drobyshev, physicist, doctor of physical and mathematical sciences, professor at al-Farabi Kazakh National University and chief researcher of the Institute of Experimental and Theoretical Physics (IETP) and Natoinal Nanotechnological Laboratory of Open Type (NNLOT). He was a remarkable man and a great developer of the scientific direction of “Cryophysics” in the Republic of Kazakhstan. He has passed away on 20th December, 2018 at the age of 68

    PHOTOTHERMAL EFFECTS AND HEAT CONDUCTION IN NANOGRANULAR SILICON FILMS

    No full text
    We present results on the photothermal (PT) and heat conductive properties of nanogranular silicon (Si) films synthesized by evaporation of colloidal droplets (drop-casting) of 100 ± 50 nm-sized crystalline Si nanoparticles (NP) deposited on glass substrates. Simulations of the absorbed light intensity and photo-induced temperature distribution across the Si NP films were carried out by using the Finite difference time domain (FDTD) and finite element mesh (FEM) modeling and the obtained data were compared with the local temperatures measured by micro-Raman spectroscopy and then was used for determining the heat conductivities k in the films of various thicknesses. The cubic-to-hexagonal phase transition in Si NP films caused by laser-induced heating was found to be heavily influenced by the film thickness and heat-conductive properties of glass substrate, on which the films were deposited. The k values in drop-casted Si nanogranular films were found to be in the range of lowest k of other types of nanostructurely voided Si films due to enhanced phonon scattering across inherently voided topology, weak NP-NP and NP-substrate interface bonding within nanogranular Si films. Keywords: silicon; nanogranular; nanoparticle; nanostructure; porous; void; drop casting; thin film; laser heating; photothermal; temperature; Raman; phonons; heat conduction; phase transition; finite element modeling; thermal conductivity; FDTD; FEM; phase transitio

    Impact of Carbon Fluoroxide Nanoparticles on Cell Proliferation

    No full text
    Cytotoxicity of fluorescent carbon fluoroxide (CFO) nanoparticles (NPs) was studied in a label-free manner on several cancer and non-cancer cell lines. A direct cytotoxic effect of the CFO NPs was clearly observed by a suppression of cell proliferation. The real-time measurement of cell activities allowed to quantify the impact of the uptaken NPs on cell proliferation and after washout of the NPs from the cell culture medium. The results show more toxic effects of the CFO NPs on cancer than on non-cancer cell lines. The notion of NPs biocompatibility must be related to a maximum concentration value of the NPs acceptable for a given cell type. Furthermore, the cytotoxicity effects of NPs should be studied not only during their direct exposure to cells but also after their washout from the culture medium.ISSN:2079-499

    Application of the Photoacoustic Approach in the Characterization of Nanostructured Materials

    No full text
    International audienceA new generation of sensors can be engineered based on the sensing of several markers to satisfy the conditions of the multimodal detection principle. From this point of view, photoacoustic-based sensing approaches are essential. The photoacoustic effect relies on the generation of light-induced deformation (pressure) perturbations in media, which is essential for sensing applications since the photoacoustic response is formed due to a contrast in the optical, thermal, and acoustical properties. It is also particularly important to mention that photoacoustic light-based approaches are flexible enough for the measurement of thermal/elastic parameters. Moreover, the photoacoustic approach can be used for imaging and visualization in material research and biomedical applications. The advantages of photoacoustic devices are their compact sizes and the possibility of on-site measurements, enabling the online monitoring of material parameters. The latter has significance for the development of various sensing applications, including biomedical ones, such as monitoring of the biodistribution of biomolecules. To extend sensing abilities and to find reliable measurement conditions, one needs to clearly understand all the phenomena taking place during energy transformation during photoacoustic signal formation. Therefore, the current paper is devoted to an overview of the main measurement principles used in the photoacoustic setup configurations, with a special focus on the key physical parameters

    Kinetics of Hydrogen Generation from Oxidation of Hydrogenated Silicon Nanocrystals in Aqueous Solutions

    No full text
    Hydrogen generation rate is one of the most important parameters which must be considered for the development of engineering solutions in the field of hydrogen energy applications. In this paper, the kinetics of hydrogen generation from oxidation of hydrogenated porous silicon nanopowders in water are analyzed in detail. The splitting of the Si-H bonds of the nanopowders and water molecules during the oxidation reaction results in powerful hydrogen generation. The described technology is shown to be perfectly tunable and allows us to manage the kinetics by: (i) varying size distribution and porosity of silicon nanoparticles; (ii) chemical composition of oxidizing solutions; (iii) ambient temperature. In particular, hydrogen release below 0 °C is one of the significant advantages of such a technological way of performing hydrogen generation

    Photo- and Radiofrequency-Induced Heating of Photoluminescent Colloidal Carbon Dots

    No full text
    Nitrogen- and oxygen-containing carbon nanoparticles (O, N-CDs) were prepared by a facile one-step solvothermal method using urea and citric acid precursors. This method is cost-effective and easily scalable, and the resulting O, N-CDs can be used without additional functionalization and sample pretreatment. The structure of O, N-CDs was characterized by TEM, AFM, Raman, UV-vis, and FTIR spectroscopies. The obtained O, N-CDs with a mean diameter of 4.4 nm can be easily dispersed in aqueous solutions. The colloidal aqueous solutions of O, N-CDs show significant photothermal responses under red-IR and radiofrequency (RF) irradiations. The as-prepared O, N-CDs have a bright temperature-dependent photoluminescence (PL). PL/PLE spectral maps were shown to be used for temperature evaluation purposes in the range of 30–50 °C. In such a way, the O, N-CDs could be used for biomedicine-related applications such as hyperthermia with simultaneous temperature estimation with PL imaging
    corecore