413 research outputs found

    Parity-Violating Electron Scattering as a Probe of Supersymmetry

    Get PDF
    We compute the one-loop supersymmetric (SUSY) contributions to the weak charges of the electron (QWeQ_W^e) and proton (QWpQ_W^p) using the Minimal Supersymmetric Standard Model (MSSM). These q2=0q^2=0 vector couplings of the Z0Z^0-boson to fermions will be determined in two fixed-target, parity-violating electron scattering experiments. The SUSY loop contributions to QWpQ_W^p and QWeQ_W^e can be substantial, leading to several percent corrections to the Standard Model values for these quantities. We show that the relative signs of the SUSY loop effects on QWeQ_W^e and QWpQ_W^p are correlated and positive over nearly all of the MSSM parameter space, whereas inclusion of R-parity nonconserving interactions can lead to opposite sign relative shifts in the weak charges. Thus, a comparison of QWpQ_W^p and QWeQ_W^e measurements could help distinguish between different SUSY scenarios.Comment: 4 pages, 2 figure

    Probing Supersymmetry with Neutral Current Scattering Experiments

    Get PDF
    We compute the supersymmetric contributions to the weak charges of the electron and proton in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R_nu and R_nubar at nu (nubar)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.Comment: 4 pages, contribution to the proceedings of CIPANP 2003 (May, 2003), New York Cit

    Radiative corrections in neutrino-deuterium disintegration

    Get PDF
    The radiative corrections of order alpha for the charged- and neutral-current neutrino-deuterium disintegration for energies relevant to the SNO experiment are evaluated. Particular attention is paid to the issue of the bremsstrahlung detection threshold. It is shown that the radiative corrections to the total cross section for the charged current reaction are independent of that threshold, as they must be for consistency, and amount to a slowly decreasing function of the neutrino energy E-nu, varying from about 4% at low energies to 3% at the end of the B-8 spectrum. The differential cross section corrections, on the other hand, do depend on the bremsstrahlung detection threshold. Various choices of the threshold are discussed. It is shown that for a realistic choice of the threshold and for the actual electron energy threshold of the SNO detector, the deduced B-8 nu(e) flux should be decreased by about 2%. The radiative corrections to the neutral-current reaction are also evaluated

    Parity-Violating Electron Scattering from the Pion-Correlated Relativistic Fermi Gas

    Get PDF
    Parity-violating quasielastic electron scattering is studied within the context of the relativistic Fermi gas and its extensions to include the effects of pionic correlations and meson-exchange currents. The work builds on previous studies using the same model; here the part of the parity-violating asymmetry that contains axial-vector hadronic currents is developed in detail using those previous studies and a link is provided to the transverse vector-isovector response. Various integrated observables are constructed from the differential asymmetry. These include an asymmetry averaged over the quasielastic peak, as well as the difference of the asymmetry integrated to the left and right of the peak -- the latter is shown to be optimal for bringing out the nature of the pionic correlations. Special weighted integrals involving the differential asymmetry and electromagnetic cross section, based on the concepts of y-scaling and sum rules, are constructed and shown to be suited to studies of the single-nucleon form factor content in the problem, in particular, to determinations of the isovector/axial-vector and electric strangeness form factors. Comparisons are also made with recent predictions made on the basis of relativistic mean-field theory.Comment: 28 pages, LATeX, 13 figures (tar-compressed postscript files, available from the authors), MIT preprint CTP#222

    Supersymmetric Effects in Parity-Violating Deep Inelastic Electron-Nucleus Scattering

    Full text link
    We compute the supersymmetric (SUSY) corrections to the parity-violating, deep inelastic electron-deuteron asymmetry. Working with the Minimal Supersymmetric Standard Model (MSSM) we consider two cases: R parity conserving and R parity-violating. Under these scenarios, we compare the SUSY effects with those entering other parity-violating observables. For both cases of the MSSM, we find that the magnitude of the SUSY corrections can be as large as about 1% and that they are strongly correlated with the effects on other parity-violating observables. A comparison of various low-energy parity-violating observables thus provides a potentially interesting probe of SUSY.Comment: 12 pages, 5 figure

    Pion Leptonic Decays and Supersymmetry

    Get PDF
    We compute supersymmetric contributions to pion leptonic (\pi_{l2}) decays in the Minimal Supersymmetric Standard Model (MSSM). When R-parity is conserved, the largest contributions to the ratio R_{e/\mu} = \Gamma[ \pi^+ \to e^+ \nu_e(\gamma)]/\Gamma[ \pi^+ \to \mu^+ \nu_\mu(\gamma)] arise from one-loop (V-A)x(V-A) corrections. These contributions can be potentially as large as the sensitivities of upcoming experiments; if measured, they would imply significant bounds on the chargino and slepton sectors complementary to current collider limits. We also analyze R-parity violating interactions, which may produce a detectable deviation in R_{e/\mu} while remaining consistent with all other precision observables.Comment: 12 pages, 11 figures; included additional electroweak constraints in analysis, simplified abstract, ref. adde

    Probing Nucleon Strangeness with Neutrinos: Nuclear Model Dependences

    Get PDF
    The extraction of the nucleon's strangeness axial charge, Delta_s, from inclusive, quasielastic neutral current neutrino cross sections is studied within the framework of the plane-wave impulse approximation. We find that the value of Delta_s can depend significantly on the choice of nuclear model used in analyzing the quasielastic cross section. This model-dependence may be reduced by one order of magnitude when Delta_s is extracted from the ratio of total proton to neutron yields. We apply this analysis to the interpretation of low-energy neutrino cross sections and arrive at a nuclear theory uncertainty of plus/minus 0.03 on the value of Delta_s expected to be determined from the ratio of proton and neutron yields measured by the LSND collaboration. This error compares favorably with estimates of the SU(3)-breaking uncertainty in the value of Delta_s extracted from inclusive, polarized deep-inelastic structure function measurements. We also point out several general features of the quasielastic neutral current neutrino cross section and compare them with the analogous features in inclusive, quasielastic electron scattering.Comment: 40 pages (including 11 postscript figures), uses REVTeX and epsfig.st

    Parity-violating longitudinal response

    Get PDF
    The longitudinal quasielastic parity-violating electron scattering response is explored within the context of a model that builds antisymmetrized RPA-HF correlations on a relativistic Fermi gas basis. The large sensitivity to nuclear dynamics of this observable, found in previous studies where only pionic correlations were included, is shown to survive in the present model where the effects from pion, rho, sigma and omega exchange in a version of the Bonn potential are incorporated. Through an intricate diagrammatic cancellation/filtration mechanism the longitudinal parity-violating response turns out to be close to the one obtained in first-order perturbation theory with the pion alone. Finally, in accord with our previous work, the parity-violating response is seen to display appreciable sensitivity to the electric strangeness content of the nucleon, especially at high momentum transfer.Comment: 13 pages, uses REVTeX and epsfig, 10 postscript figures; a postscript version of the paper is available by anonymous ftp at ftp://carmen.to.infn.it/pub/barbaro/papers/951

    Electroweak Beautygenesis: From b {\to} s CP-violation to the Cosmic Baryon Asymmetry

    Get PDF
    We address the possibility that CP-violation in BsBˉsB_s-\bar B_s mixing may help explain the origin of the cosmic baryon asymmetry. We propose a new baryogenesis mechanism - "Electroweak Beautygenesis" - explicitly showing that these two CP-violating phenomena can be sourced by a common CP-phase. As an illustration, we work in the Two-Higgs-Doublet model. Because the relevant CP-phase is flavor off-diagonal, this mechanism is less severely constrained by null results of electric dipole moment searches than other scenarios. We show how measurements of flavor observables by the D0, CDF, and LHCb collaborations test this scenario.Comment: 4 pages, 1 figure, 1 tabl

    Neutrinoless Double Beta Decay and Lepton Flavor Violation

    Get PDF
    We point out that extensions of the Standard Model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with GUT scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of \mu -> e \gamma and \mu -> e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.Comment: 4 pages, 3 figure
    corecore