8,335 research outputs found

    Topological Solitons in Discrete Space-Time as the Model of Fermions

    Get PDF
    In the present paper we discuss arguments, favouring the view that massive fermions represent dislocations (i.e. topological solitons) in discrete space-time with Burgers vectors, parallel to an axis of time. If to put symmetrical parts of tensors of distortions (i.e. derivatives of atomic displacements on coordinates) and mechanical stresses equal zero, the equations of the field theory of dislocations get the form of the Maxwell equations. If to consider these tensors as symmetrical, we shall receive the equations of the theory of gravitation, and it turns out that the sum of tensor of distortions and pseudo-Euclidean metrical tensor is the analogue of metrical tensor. It is shown that we can also get Dirac equation with four-fermion interaction in the framework of the field theory of dislocations. This model explains quantization of electrical charge: it is proportional to the topological charge of dislocation, and this charge accepts quantized values because of discrete structure of the 4-dimensional lattice.Comment: 10 pages, 1 GIF figure, submitted to J. Nonlin. Math. Phy

    Characterisation of radiation damage in silicon photomultipliers with a Monte Carlo model

    Full text link
    Measured response functions and low photon yield spectra of silicon photomultipliers (SiPM) were compared to multi-photoelectron pulse-height distributions generated by a Monte Carlo model. Characteristic parameters for SiPM were derived. The devices were irradiated with 14 MeV electrons at the Mainz microtron MAMI. It is shown that the first noticeable damage consists of an increase in the rate of dark pulses and the loss of uniformity in the pixel gains. Higher radiation doses reduced also the photon detection efficiency. The results are especially relevant for applications of SiPM in fibre detectors at high luminosity experiments.Comment: submitted to Nucl. Instr. and Meth.

    On the limited amplitude resolution of multipixel Geiger-mode APDs

    Full text link
    The limited number of active pixels in a Geiger-mode Avalanche Photodiode (G-APD) results not only in a non-linearity but also in an additional fluctuation of its response. Both these effects are taken into account to calculate the amplitude resolution of an ideal G-APD, which is shown to be finite. As one of the consequences, the energy resolution of a scintillation detector based on a G-APD is shown to be limited to some minimum value defined by the number of pixels in the G-APD.Comment: 5 pages, 3 figure

    Vortex instability in molybdenum-germanium superconducting films

    Full text link
    We studied the high driving force regime of the current-voltage transport response in the mixed state of amorphous molybdenum-germanium superconducting films to the point where the flux flow becomes unstable. The observed nonlinear response conforms with the classic Larkin-Ovchinikov (LO) picture with a quasiparticle-energy-relaxation rate dominated by the quasiparticle recombination process. The measured energy relaxation rate was found to have a magnitude and temperature dependence in agreement with theory. PACS: 74.40.Gh, 74.25.Uv, 72.15.Lh, 73.50.Gr, 73.50.Fq Keywords: fluxon, vortices, TDGL, FFF, negative differential conductivity, NDC, non-monotonic IV curveComment: 5 pages, 3 figure

    Strongly nonequilibrium flux flow in the presence of perforating submicron holes

    Full text link
    We report on the effects of perforating submicron holes on the vortex dynamics of amorphous Nb0.7Ge0.3 microbridges in the strongly nonequilibrium mixed state, when vortex properties change substantially. In contrast to the weak nonequilibrium - when the presence of holes may result in either an increase (close to Tc) or a decrease (well below Tc) of the dissipation, in the strong nonequilibrium an enhanced dissipation is observed irrespectively of the bath temperature. Close to Tc this enhancement is similar to that in the weak nonequilibrium, but corresponds to vortices shrunk due to the Larkin-Ovchinnikov mechanism. At low temperatures the enhancement is a consequence of a weakening of the flux pinning by the holes in a regime where electron heating dominates the superconducting properties.Comment: 6 pages, 5 figure

    Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    Get PDF
    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.Comment: Proceedings of NDIP-2008. 8 pages, 8 figures, 6 reference
    corecore