2 research outputs found
Devouring the Milky Way Satellites: Modeling Dwarf Galaxies with Galacticus
Dwarf galaxies are ubiquitous throughout the universe and are extremely sensitive to various forms of internal and external feedback. Over the last two decades, the census of dwarf galaxies in the Local Group and beyond has increased markedly. While hydrodynamic simulations (e.g., FIRE II, Mint Justice League) have reproduced the observed dwarf properties down to the ultrafaints, such simulations require extensive computational resources to run. In this work, we constrain the standard physical implementations in the semianalytic model Galacticus to reproduce the observed properties of the Milky Way satellites down to the ultrafaint dwarfs found in the Sloan Digital Sky Survey. We run Galacticus on merger trees from our high-resolution N-body simulation of a Milky Way analog. We determine the best-fit parameters by matching the cumulative luminosity function and luminosity-metallicity relation from both observations and hydrodynamic simulations. With the correct parameters, the standard physics in Galacticus can reproduce the observed luminosity function and luminosity-metallicity relation of the Milky Way dwarfs. In addition, we find a multidimensional match with half-light radii, velocity dispersions, and mass to light ratios at z = 0 down to M V ≤ −6 (L ≥ 104 L ⊙). In addition to successfully reproducing the properties of the z = 0 Milky Way satellite population, our modeled dwarfs have star formation histories that are consistent with those of the Local Group dwarfs
\u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu