90 research outputs found
Multiscale Random-Walk Algorithm for Simulating Interfacial Pattern Formation
We present a novel computational method to simulate accurately a wide range
of interfacial patterns whose growth is limited by a large scale diffusion
field. To illustrate the computational power of this method, we demonstrate
that it can be used to simulate three-dimensional dendritic growth in a
previously unreachable range of low undercoolings that is of direct
experimental relevance.Comment: 4 pages RevTex, 6 eps figures; substantial changes in presentation,
but results and conclusions remain the sam
The low temperature interface between the gas and solid phases of hard spheres with a short-ranged attraction
At low temperature, spheres with a very short-ranged attraction exist as a
close-packed solid coexisting with an infinitely dilute gas. We find that the
ratio of the interfacial tension between these two phases to the thermal energy
diverges as the range of the attraction goes to zero. The large tensions when
the interparticle attractions are short-ranged may be why globular proteins
only crystallise over a narrow range of conditions.Comment: 6 pages, no figures (v2 has change of notation to agree with that of
Stell
Nonergodicity transitions in colloidal suspensions with attractive interactions
The colloidal gel and glass transitions are investigated using the idealized
mode coupling theory (MCT) for model systems characterized by short-range
attractive interactions. Results are presented for the adhesive hard sphere and
hard core attractive Yukawa systems. According to MCT, the former system shows
a critical glass transition concentration that increases significantly with
introduction of a weak attraction. For the latter attractive Yukawa system, MCT
predicts low temperature nonergodic states that extend to the critical and
subcritical region. Several features of the MCT nonergodicity transition in
this system agree qualitatively with experimental observations on the colloidal
gel transition, suggesting that the gel transition is caused by a low
temperature extension of the glass transition. The range of the attraction is
shown to govern the way the glass transition line traverses the phase diagram
relative to the critical point, analogous to findings for the fluid-solid
freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999
Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions
Computer simulations were used to study the gel transition occurring in
colloidal systems with short range attractions. A colloid-polymer mixture was
modelled and the results were compared with mode coupling theory expectations
and with the results for other systems (hard spheres and Lennard Jones). The
self-intermediate scattering function and the mean squared displacement were
used as the main dynamical quantities. Two different colloid packing fractions
have been studied. For the lower packing fraction, -scaling holds and
the wave-vector analysis of the correlation function shows that gelation is a
regular non-ergodicity transition within MCT. The leading mechanism for this
novel non-ergodicity transition is identified as bond formation caused by the
short range attraction. The time scale and diffusion coefficient also show
qualitatively the expected behaviour, although different exponents are found
for the power-law divergences of these two quantities. The non-Gaussian
parameter was also studied and very large correction to Gaussian behaviour
found. The system with higher colloid packing fraction shows indications of a
nearby high-order singularity, causing -scaling to fail, but the
general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure
- …