122 research outputs found
Deterministic quantum teleportation between distant atomic objects
Quantum teleportation is a key ingredient of quantum networks and a building
block for quantum computation. Teleportation between distant material objects
using light as the quantum information carrier has been a particularly exciting
goal. Here we demonstrate a new element of the quantum teleportation landscape,
the deterministic continuous variable (cv) teleportation between distant
material objects. The objects are macroscopic atomic ensembles at room
temperature. Entanglement required for teleportation is distributed by light
propagating from one ensemble to the other. Quantum states encoded in a
collective spin state of one ensemble are teleported onto another ensemble
using this entanglement and homodyne measurements on light. By implementing
process tomography, we demonstrate that the experimental fidelity of the
quantum teleportation is higher than that achievable by any classical process.
Furthermore, we demonstrate the benefits of deterministic teleportation by
teleporting a dynamically changing sequence of spin states from one distant
object onto another
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
Gauge theories are fundamental to our understanding of interactions between
the elementary constituents of matter as mediated by gauge bosons. However,
computing the real-time dynamics in gauge theories is a notorious challenge for
classical computational methods. In the spirit of Feynman's vision of a quantum
simulator, this has recently stimulated theoretical effort to devise schemes
for simulating such theories on engineered quantum-mechanical devices, with the
difficulty that gauge invariance and the associated local conservation laws
(Gauss laws) need to be implemented. Here we report the first experimental
demonstration of a digital quantum simulation of a lattice gauge theory, by
realising 1+1-dimensional quantum electrodynamics (Schwinger model) on a
few-qubit trapped-ion quantum computer. We are interested in the real-time
evolution of the Schwinger mechanism, describing the instability of the bare
vacuum due to quantum fluctuations, which manifests itself in the spontaneous
creation of electron-positron pairs. To make efficient use of our quantum
resources, we map the original problem to a spin model by eliminating the gauge
fields in favour of exotic long-range interactions, which have a direct and
efficient implementation on an ion trap architecture. We explore the Schwinger
mechanism of particle-antiparticle generation by monitoring the mass production
and the vacuum persistence amplitude. Moreover, we track the real-time
evolution of entanglement in the system, which illustrates how particle
creation and entanglement generation are directly related. Our work represents
a first step towards quantum simulating high-energy theories with atomic
physics experiments, the long-term vision being the extension to real-time
quantum simulations of non-Abelian lattice gauge theories
Nonlocal restoration of two-mode squeezing in the presence of strong optical loss
We present the experimental realization of a theoretical effect discovered by
Olivares and Paris, in which a pair of entangled optical beams undergoing
independent losses can see nonlocal correlations restored by the use of a
nonlocal resource correlating the losses. Twin optical beams created in an
entangled Einstein-Podolsky-Rosen (EPR) state by an optical parametric
oscillator above threshold were subjected to 50% loss from beamsplitters in
their paths. The resulting severe degradation of the signature quantum
correlations observed between the two beams was then suppressed when another,
independent EPR state impinged upon the other input ports of the beamsplitters,
effectively entangling the losses inflicted to the initial EPR state. The
additional EPR beam pair was classically coherent with the primary one but had
no quantum correlations with it. This result may find applications as a quantum
tap for entanglement.Comment: 14 pages, 6 figures, submitted for publicatio
Quantum Memory Assisted Probing of Dynamical Spin Correlations
We propose a method to probe time dependent correlations of non trivial
observables in many-body ultracold lattice gases. The scheme uses a quantum
non-demolition matter-light interface, first, to map the observable of interest
on the many body system into the light and, then, to store coherently such
information into an external system acting as a quantum memory. Correlations of
the observable at two (or more) instances of time are retrieved with a single
final measurement that includes the readout of the quantum memory. Such method
brings at reach the study of dynamics of many-body systems in and out of
equilibrium by means of quantum memories in the field of quantum simulators.Comment: 4.1 pages, 2 figures, accepted version, additional material and
proof's corrections not include
Simulating open quantum systems: from many-body interactions to stabilizer pumping
In a recent experiment, Barreiro et al. demonstrated the fundamental building
blocks of an open-system quantum simulator with trapped ions [Nature 470, 486
(2011)]. Using up to five ions, single- and multi-qubit entangling gate
operations were combined with optical pumping in stroboscopic sequences. This
enabled the implementation of both coherent many-body dynamics as well as
dissipative processes by controlling the coupling of the system to an
artificial, suitably tailored environment. This engineering was illustrated by
the dissipative preparation of entangled two- and four-qubit states, the
simulation of coherent four-body spin interactions and the quantum
non-demolition measurement of a multi-qubit stabilizer operator. In the present
paper, we present the theoretical framework of this gate-based ("digital")
simulation approach for open-system dynamics with trapped ions. In addition, we
discuss how within this simulation approach minimal instances of spin models of
interest in the context of topological quantum computing and condensed matter
physics can be realized in state-of-the-art linear ion-trap quantum computing
architectures. We outline concrete simulation schemes for Kitaev's toric code
Hamiltonian and a recently suggested color code model. The presented simulation
protocols can be adapted to scalable and two-dimensional ion-trap
architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum
Computatio
Information theory in the study of anisotropic radiation
Information theory is used to perform a thermodynamic study of non
equilibrium anisotropic radiation. We limit our analysis to a second-order
truncation of the moments, obtaining a distribution function which leads to a
natural closure of the hierarchy of radiative transfer equations in the
so-called variable Eddington factor scheme. Some Eddington factors appearing in
the literature can be recovered as particular cases of our two-parameter
Eddington factor. We focus our attention in the study of the thermodynamic
properties of such systems and relate it to recent nonequilibrium thermodynamic
theories. Finally we comment the possibility of introducing a nonequilibrium
chemical potential for photons.Comment: 1 eps figure upon request by e-mail, to appear in Journal of Physics
On the inertia of heat
Does heat have inertia? This question is at the core of a long-standing
controversy on Eckart's dissipative relativistic hydrodynamics. Here I show
that the troublesome inertial term in Eckart's heat flux arises only if one
insists on defining thermal diffusivity as a spacetime constant. I argue that
this is the most natural definition, and that all confusion disappears if one
considers instead the space-dependent comoving diffusivity, in line with the
fact that, in the presence of gravity, space is an inhomogeneous medium.Comment: 3 page
- …