5 research outputs found

    Long-lived isomeric states and quasiparticle band structures in neutron-rich Gd 162,164 nuclei from β decay

    Get PDF
    Neutron-rich nuclei Eu162,164 were produced by bombarding a proton beam on a U238 target at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory and mass separating the Eu162,164 products. New level schemes and new γ-ray transitions of the daughters Gd162,164 were identified from β-decay spectroscopy studies. Half-lives of the Eu162,164 were remeasured to clarify the previous ambiguous results. Two quasiparticle band structures were built and compared with neighboring nuclei. The β and γ bands were extended in Gd162 and a γ band was extended in Gd164. Half-lives of the isomeric states at (6-) 1449 keV in Gd162 and (4-) 1096 keV in Gd164 were measured to be 99(3) μs and 0.56(3) μs, respectively. Projected shell model calculations were performed and found to be in good agreement with all of the experimental data

    New transitions and levels for Tb 163 obtained from β -decay studies

    Get PDF
    Transitions in Tb163 following β decay of Gd163 were obtained as part of investigations of γ rays emitted following Eu163β decay to Gd163. Detailed analysis of the low-energy structure of Tb163 has been carried out with these data to expand previous β-decay studies and reactions studies of levels in Tb163. Data were collected at the LeRIBSS station of the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory with an array of four Clover HPGe detectors for γ rays and two plastic scintillators for β detection. The γ rays were identified as belonging to Gd163 and Tb163 via mass selection and γ-γ-β, γ-γ, or γ-x-ray coincidence. In total, 38 new γ-ray transitions were observed in Tb163 from 15 newly identified levels and 12 previously identified levels. Potential energy surface calculations were performed which support a rigid prolate deformation. Previously identified unplaced transitions in Tb163 have been placed within the level scheme of Tb163 and additional states and transitions have been identified

    Identification of new transitions and levels in Gd 163 from β -decay studies

    Get PDF
    Background: Neutron-rich nuclei in the mass region around A=160 have been and will continue to be of interest for the study of nuclear structure because of the rapid onset of deformation between 88 and 90 neutrons. The observation of detailed changes in nuclear structures within this mass region has provided and will continue to provide insight into the nuclear force. Purpose: Investigations of γ rays emitted following Eu163 β-decay to Gd163 have been performed for evaluation of the nuclear structure of Gd163. Method: Data were collected at the LeRIBSS station of the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory with an array of four Clover HPGe detectors for γ-rays and two plastic scintillators for β detection. The γ rays were identified as belonging to Gd163 via mass selection and γ-γ-β, x-ray-γ, or γ-γ coincidences. Results: In total 107 new γ-ray transitions were observed in Gd163 from 53 newly identified levels. Conclusions: The structure of Gd163 has been identified for the first time. This structure has been evaluated in comparison to projected shell model, and potential energy surface calculations with good agreement
    corecore