10 research outputs found

    Genetic variation of acquired structural chromosomal aberrations

    No full text
    Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response

    Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans

    No full text
    Non-specific chromosomal aberrations (CAs) are microscopically detected in about 1% of lymphocytes drawn from healthy persons. Causes of CAs in general population are not known but they may be related to risk of cancer. In view of the importance of the mitotic checkpoint machinery on maintaining chromosomal integrity we selected 9 variants in main checkpoint related genes (BUB1B, BUB3, MAD2L1, CENPF, ESPL1/separase, NEK2, PTTG1/securin, ZWILCH and ZWINT) for a genotyping study on samples from healthy individuals (N = 330 to 729) whose lymphocytes had an increased number of CAs compared to persons with a low number of CAs. Genetic variation in individual genes played a minor importance, consistent with the high conservation and selection pressure of the checkpoint system. However, gene pairs were significantly associated with CAs: PTTG1-ZWILCH and PTTG1-ZWINT. MAD2L1 and PTTG1 were the most common partners in any of the two-way interactions. The results suggest that interactions at the level of cohesin (PTTG1) and kinetochore function (ZWINT, ZWILCH and MAD2L1) contribute to the frequency of CAs, suggesting that gene variants at different checkpoint functions appeared to be required for the formation of CAs

    Markers of individual susceptibility and DNA repair rate in workers exposed to xenobiotics in a tire plant.

    No full text
    Workers employed in tire plants are exposed to a variety of xenobiotics, such as 1,3-butadiene (BD), soots containing polycyclic aromatic hydrocarbons, and other organic chemicals (e.g., styrene). In the present study, we investigated markers of genotoxicity [chromosomal aberrations (CAs) and single-strand breaks (SSBs)] in a cohort of 110 tire plant workers engaged in jobs with different levels of xenobiotic exposure in relation to various polymorphisms in genes coding for biotransformation enzymes (CYP1A1, CYP2E1, EPHX1, GSTM1, GSTP1, and GSTT1) and in genes involved in DNA repair (XPD exon 23, XPG exon 15, XPC exon 15, XRCC1 exon 10, and XRCC3 exon 7). In addition, the expression of CYP2E1, a gene playing a key role in BD metabolism, was determined by real-time PCR in peripheral blood lymphocytes, and the capacity of lymphocytes to repair gamma-ray-induced SSBs and to convert 8-oxoguanine in HeLa cell DNA into SSBs was assessed using in vitro assays. No positive associations were detected between the CA frequency or SSB induction and levels of workplace exposure; however, a nonsignificant twofold higher irradiation-specific DNA repair rate was found among highly exposed workers. In evaluations conducted with the markers of individual susceptibility, workers with low-EPHX1-activity genotypes exhibited a significantly higher CA frequency as compared to those with medium and high-EPHX1-activity genotypes (P = 0.050). CA frequencies were significantly lower in individuals homozygous for the XPD exon 23 variant allele in comparison to those with the wild-type CC genotype (P = 0.003). Interestingly, CAs were higher in individuals with higher CYP2E1 expression levels, but the association was nonsignificant (P = 0.097). The results from this study suggest the importance of evaluating markers of individual susceptibility, since they may modulate genotoxic effects induced by occupational exposure to xenobiotics

    Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA.

    No full text
    We analysed the associations between genetic polymorphisms in genes coding for DNA repair enzymes XPD (exon 23 A --> C, K751Q), XPG (exon 15 G --> C, D1104H), XPC (exon 15 A --> C, K939Q), XRCC1 (exon 10 G --> A, R399Q) and XRCC3 (exon 7 C --> T, T241 M) and the levels of chromosomal aberrations (CAs) and single-strand breaks (SSBs) in peripheral lymphocytes in a central European population. We also measured the irradiation-specific DNA repair rates and the repair rates of 8-oxoguanines in these individuals. An elevated frequency of CAs was observed in individuals with the XPD exon 23 A allele (AA and AC) genotypes (F = 3.6, P = 0.028, ANOVA). In multifactorial analysis of variance, the XPD exon 23 polymorphism appeared as a major factor influencing CAs (F = 4.2, P = 0.017). SSBs in DNA, on the other hand, were modulated by XPD (F = 4.3, P = 0.023), XPG (F = 4.3, P = 0.024) and XRCC1 genotypes (F = 3.0, P = 0.064). Irradiation-specific DNA repair rates (reflecting mainly base excision repair activity) were affected by XRCC1 (F = 5.9, P = 0.010) and XPC polymorphisms (F = 4.2, P = 0.046, MANOVA). Our results from this study suggest that markers of genotoxicity are associated with polymorphisms in genes encoding DNA repair enzymes

    Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects.

    No full text
    Human cancers are often associated with numerical and structural chromosomal instability. Structural chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBL) arise as consequences of direct DNA damage or due to replication on a damaged DNA template. In both cases, DNA repair is critical and inter-individual differences in its capacity are probably due to corresponding genetic variations. We investigated functional variants in DNA repair genes (base and nucleotide excision repair, double-strand break repair) in relation to CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) in healthy individuals. Chromosomal damage was determined by conventional cytogenetic analysis. The genotyping was performed by both restriction fragment length polymorphism and TaqMan allelic discrimination assays. Multivariate logistic regression was applied for testing individual factors on CAs, CTAs and CSAs. Pair-wise genotype interactions of 11 genes were constructed for all possible pairs of single-nucleotide polymorphisms. Analysed individually, we observed significantly lower CTA frequencies in association with XPD Lys751Gln homozygous variant genotype [odds ratio (OR) 0.64, 95% confidence interval (CI) 0.48-0.85, P = 0.004; n = 1777]. A significant association of heterozygous variant genotype in RAD54L with increased CSA frequency (OR 1.96, 95% CI 1.01-4.02, P = 0.03) was determined in 282 subjects with available genotype. By addressing gene-gene interactions, we discovered 14 interactions significantly modulating CAs, 9 CTAs and 12 CSAs frequencies. Highly significant interactions included always pairs from two different pathways. Although individual variants in genes encoding DNA repair proteins modulate CAs only modestly, several gene-gene interactions in DNA repair genes evinced either enhanced or decreased CA frequencies suggesting that CAs accumulation requires complex interplay between different DNA repair pathways

    DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations

    No full text
    DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10–3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure

    Genetic variation associated with chromosomal aberration frequency : A genome-wide association study

    No full text
    Chromosomal aberrations (CAs) in human peripheral blood lymphocytes (PBL) measured with the conventional cytogenetic assay have been used for human biomonitoring of genotoxic exposure for decades. CA frequency in peripheral blood is a marker of cancer susceptibility. Previous studies have shown associations between genetic variants in metabolic pathway, DNA repair and major mitotic checkpoint genes and CAs. We conducted a genome-wide association study on 576 individuals from the Czech Republic and Slovakia followed by a replication in two different sample sets of 482 (replication 1) and 1288 (replication 2) samples. To have a broad look at the genetic susceptibility associated with CA frequency, the sample sets composed of individuals either differentially exposed to smoking, occupational/environmental hazards, or they were untreated cancer patients. Phenotypes were divided into chromosome- and chromatid-type aberrations (CSAs and CTAs, respectively) and total chromosomal aberrations (CAtot). The arbitrary cutoff point between individuals with high and low CA frequency was 2% for CAtot and 1% for CSA and CTA. The data were analyzed using age, sex, occupation/cancer and smoking history as covariates. Altogether 11 loci reached the P-value of 10−5 in the GWAS. Replication 1 supported the association of rs1383997 (8q13.3) and rs2824215 (21q21.1) in CAtot and rs983889 (5p15.1) in CTA analysis. These loci were found to be associated with genes involved in mitosis, response to environmental and chemical factors and genes involved in syndromes linked to chromosomal abnormalities. Identification of new genetic variants for the frequency of CAs offers prediction tools for cancer risk in future. 2018 Wiley Periodicals, Inc
    corecore