4 research outputs found

    ANN (Artificial Neural Network) Controlled Virtual Laboratory Design for NdFeB Magnet Production

    Get PDF
    Magnets have an important place in electrical and electronic systems and applications nowadays. The developments in the field of magnets have also greatly expanded their usage areas. NdFeB magnets play active and important role in this development. In this study, design of virtual laboratory to be used for the production of nanocomposite NdFeB magnets has been realized. Maximum energy product (BHmax) is an important value for permanent magnets. The high BHmax value in small volume for the magnets is a desired criterion. In the study, mathematical functions were created from the data related to Br (permanent magnetism), Hc (magnetic coercivity), BHmax, Tc (Curie temperature) and density obtained in the researches on different NdFeB alloys in the laboratory. Additionally, Br functions were obtained by adding different additives (Co,Ti, Zr, Hf, V, Ta, Nb, Cr, W, Mo, Mn, Ni, Sb, Sn, Ge, Al, Bi) to the NdFeB magnets. A virtual laboratory is prepared with the created functions. The obtained results from the operation of the virtual laboratory system and the results obtained from Matlab Simulink and ANN (Artificial Neural Network) systems are compared. The designed and performed virtual laboratory system can be used both for industrial purposes and for educational purposes

    Designing a Virtual laboratory for Simulating to Production of Nanocomposite NdFeB Magnets

    No full text
    The talent figure for a permanent magnet is the multiplication of the maximum energy (BHmax). Less volume magnet is required for the production of magnet flux density if the BHmax value is higher. Mathematical functions are obtained from the data related to resiudal flux density, magnetic coercitivy, permanent magnet flux product capability, Curie temperature and density which were obtained as a result of the studies on different NdFeB alloys in the laboratory. Besides this, mathematical functions of NdFeB hard magnet’s resiudal flux density are obtained by adding elements. In this study, a virtual laboratory for producing nanocompositedNdFeB magnet has been designed. The virtual laboratory software has been used to simulate NdFeB hard magnets for industrial utilities
    corecore