5 research outputs found

    EVOLUTION OF THE CARBON NANOTUBE BUNDLE STRUCTURE UNDER BIAXIAL AND SHEAR STRAINS

    Get PDF
    Close packed carbon nanotube bundles are materials with highly deformable elements, for which unusual deformation mechanisms are expected. Structural evolution of the zigzag carbon nanotube bundle subjected to biaxial lateral compression with the subsequent shear straining is studied under plane strain conditions using the chain model with a reduced number of degrees of freedom. Biaxial compression results in bending of carbon nanotubes walls and formation of the characteristic pattern, when nanotube cross-sections are inclined in the opposite directions alternatively in the parallel close-packed rows. Subsequent shearing up to a certain shear strain leads to an appearance of shear bands and vortex-like displacements. Stress components and potential energy as the functions of shear strain for different values of the biaxial volumetric strain are analyzed in detail. A new mechanism of carbon nanotube bundle shear deformation through cooperative, vortex-like displacements of nanotube cross sections is reported

    ELASTIC DAMPER BASED ON THE CARBON NANOTUBE BUNDLE

    Get PDF
    Mechanical response of the carbon nanotube bundle to uniaxial and biaxial lateral compression followed by unloading is modeled under plane strain conditions. The chain model with a reduced number of degrees of freedom is employed with high efficiency. During loading, two critical values of strain are detected. Firstly, period doubling is observed as a result of the second order phase transition, and at higher compressive strain, the first order phase transition takes place when carbon nanotubes start to collapse. The loading-unloading stress-strain curves exhibit a hysteresis loop and, upon unloading, the structure returns to its initial form with no residual strain. This behavior of the nanotube bundle can be employed for the design of an elastic damper

    Effect of Interatomic Potential on Simulation of Fracture Behavior of Cu/Graphene Composite: A Molecular Dynamics Study

    No full text
    Interatomic interaction potentials are compared using a molecular dynamics modeling method to choose the simplest, but most effective, model to describe the interaction of copper nanoparticles and graphene flakes. Three potentials are considered: (1) the bond-order potential; (2) a hybrid embedded-atom-method and Morse potential; and (3) the Morse potential. The interaction is investigated for crumpled graphene filled with copper nanoparticles to determine the possibility of obtaining a composite and the mechanical properties of this material. It is observed that not all potentials can be applied to describe the graphene–copper interaction in such a system. The bond-order potential potential takes into account various characteristics of the bond (for example, the angle of rotation and bond lengths); its application increases the simulation time and results in a strong interconnection between a metal nanoparticle and a graphene flake. The hybrid embedded-atom-method/Morse potential and the Morse potential show different results and lower bonding between graphene and copper. All the potentials enable a composite structure to be obtained; however, the resulting mechanical properties, such as strength, are different

    Crumpled Graphene-Storage Media for Hydrogen and Metal Nanoclusters

    No full text
    Understanding the structural behavior of graphene flake, which is the structural unit of bulk crumpled graphene, is of high importance, especially when it is in contact with the other types of atoms. In the present work, crumpled graphene is considered as storage media for two types of nanoclusters—nickel and hydrogen. Crumpled graphene consists of crumpled graphene flakes bonded by weak van der Waals forces and can be considered an excellent container for different atoms. Molecular dynamics simulation is used to study the behavior of the graphene flake filled with the nickel nanocluster or hydrogen molecules. The simulation results reveal that graphene flake can be considered a perfect container for metal nanocluster since graphene can easily cover it. Hydrogen molecules can be stored on graphene flake at 77 K, however, the amount of hydrogen is low. Thus, additional treatment is required to increase the amount of stored hydrogen. Remarkably, the size dependence of the structural behavior of the graphene flake filled with both nickel and hydrogen atoms is found. The size of the filling cluster should be chosen in comparison with the specific surface area of graphene flake

    Discrete breathers in alpha-uranium

    No full text
    Uranium is an important radioactive material used in the field of nuclear energy and it is interesting from the scientific point of view because it possesses unique structure and properties. There exist several experimental reports on anomalies of physical properties of uranium that have not been yet explained. Manley et al. [Phys. Rev. Lett. 96, 125501 (2006); Phys. Rev. B 77, 214305 (2008)] speculate that the excitation of discrete breathers (DBs) could be the reason for anisotropy of thermal expansion and for the deviation of heat capacity from the theoretical prediction in the high temperature range. In the present work, with the use of molecular dynamics, the existence of DBs in α-uranium is demonstrated and their properties are studied. It is found that DB frequency lies above the phonon band and increases with DB amplitude. DB is localized on half a dozen of atoms belonging to a straight atomic chain. DB in uranium, unlike DBs in fcc, bcc and hcp metals, is almost immobile. Thus, the DB reported in this study cannot contribute to thermal conductivity and the search for other types of DBs in α-uranium should be continued. Our results demonstrate that even metals with low-symmetry crystal lattices such as the orthorhombic lattice of α-uranium can support DBs
    corecore