51 research outputs found

    Collapse and Bose-Einstein condensation in a trapped Bose-gas with negative scattering length

    Full text link
    We find that the key features of the evolution and collapse of a trapped Bose condensate with negative scattering length are predetermined by the particle flux from the above-condensate cloud to the condensate and by 3-body recombination of Bose-condensed atoms. The collapse, starting once the number of Bose-condensed atoms reaches the critical value, ceases and turns to expansion when the density of the collapsing cloud becomes so high that the recombination losses dominate over attractive interparticle interaction. As a result, we obtain a sequence of collapses, each of them followed by dynamic oscillations of the condensate. In every collapse the 3-body recombination burns only a part of the condensate, and the number of Bose-condensed atoms always remains finite. However, it can comparatively slowly decrease after the collapse, due to the transfer of the condensate particles to the above-condensate cloud in the course of damping of the condensate oscillations.Comment: 11 pages, 3 figure

    Dynamics of dark solitons in elongated Bose-Einstein condensates

    Get PDF
    We find two types of moving dark soliton textures in elongated Bose-Einstein condensates: non-stationary kinks and proper dark solitons. The former have a curved notch region and rapidly decay by emitting phonons and/or proper dark solitons. The proper moving solitons are characterized by a flat notch region and we obtain the diagram of their dynamical stability. At finite temperatures the dynamically stable solitons decay due to the thermodynamic instability. We develop a theory of their dissipative dynamics and explain experimental data.Comment: ~ 5 pages, 1 figur

    Lieb Mode in a Quasi One-Dimensional Bose-Einstein Condensate of Atoms

    Full text link
    We calculate the dispersion relation associated with a solitary wave in a quasi-one-dimensional Bose-Einstein condensate of atoms confined in a harmonic, cylindrical trap in the limit of weak and strong interactions. In both cases, the dispersion relation is linear for long wavelength excitations and terminates at the point where the group velocity vanishes. We also calculate the dispersion relation of sound waves in both limits of weak and strong coupling.Comment: 4 pages, 2 ps figures, RevTe

    Vortex Rings and Lieb Modes in a Cylindrical Bose-Einstein Condensate

    Full text link
    We present a calculation of a solitary wave propagating along a cylindrical Bose-Einstein trap, which is found to be a hybrid of a one-dimensional (1D) soliton and a three-dimensional (3D) vortex ring. The calculated energy-momentum dispersion exhibits characteristics similar to those of a mode proposed sometime ago by Lieb within a 1D model, as well as some rotonlike features.Comment: 4 pages, 4 figure

    Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates

    Full text link
    We show that the quantum fluctuations associated with the Bogoliubov quasiparticle vacuum can be strongly concentrated inside dark solitons in a trapped Bose Einstein condensate. We identify a finite number of anomalous modes that are responsible for such quantum phenomena. The fluctuations in these anomalous modes correspond to the `zero-point' oscillations in coupled dark solitons.Comment: 4 pages, 3 figure

    Dissipative dynamics of vortex arrays in anisotropic traps

    Full text link
    We discuss the dissipative dynamics of vortex arrays in trapped Bose-condensed gases and analyze the lifetime of the vortices as a function of trap anisotropy and the temperature. In particular, we distinguish the two regimes of the dissipative dynamics, depending on the relative strength of the mutual friction between the vortices and the thermal component, and the friction of the thermal particles on the trap anisotropy. We study the effects of heating of the thermal cloud by the escaping vortices on the dynamics of the system.Comment: RevTeX, 8 pages, 3 eps figure

    Dissipative dynamics of a kink state in a Bose-condensed gas

    Full text link
    We develop a theory of dissipative dynamics of a kink state in a finite-temperature Bose-condensed gas. We find that due to the interaction with the thermal cloud the kink state accelerates towards the velocity of sound and continuously transforms to the ground-state condensate. We calculate the life-time of a kink state in a trapped gas and discuss possible experimental implications.Comment: 4 pages, RevTe

    Solitons in one-dimensional interacting Bose-Einstein system

    Full text link
    A modified Gross-Pitaevskii approximation was introduced recently for bosons in dimension d2d\le2 by Kolomeisky {\it et al.} (Phys. Rev. Lett. {\bf 85} 1146 (2000)). We use the density functional approach with sixth-degree interaction energy term in the Bose field to reproduce the stationary-frame results of Kolomeisky {\it et al.} for a one-dimensional Bose-Einstein system with a repulsive interaction. We also find a soliton solution for an attractive interaction, which may be boosted to a finite velocity by a Galilean transformation. The stability of such a soliton is discussed analytically. We provide a general treatment of stationary solutions in one dimension which includes the above solutions as special cases. This treatment leads to a variety of stationary wave solutions for both attractive and repulsive interactions.Comment: Latex, 14 pages, No figur
    corecore