73 research outputs found

    Marine Dynamics and Productivity in the Bay of Bengal

    Get PDF
    The Bay of Bengal provides important ecosystem services to the Bangladesh delta. It is also subject to the consequences of climate change as monsoon atmospheric circulation and fresh water input from the major rivers are the dominating influences. Changes in marine circulation will affect patterns of biological production through alterations in the supply of nutrients to photosynthesising plankton. Productivity in the northern Bay will also be sensitive to changes in riverborne nutrients. In turn, these changes could influence potential fish catch. The Bay also affects the physical environment of Bangladesh: relative sea-level rise is expected to be in the range of 0.5–1.7 m by 2100, and changing climate could affect the development of tropical cyclones over the Bay

    Prodigious submarine landslides during the inception and early growth of volcanic islands

    Get PDF
    Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth’s surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard

    Earthquake Generated Tsunami in the Indian Ocean and Probable Vulnerability Assessment for the East Coast of India

    No full text
    The tsunami hazard for the east coast of India is assessed. The Sumatra-Andaman 1300 km long fault is divided into five segments, each segment assumed to have different fault parameters. The initial vertical displacement of the sea bottom is calculated with the Mansinha and Smylie algorithm. Modeling of tsunami amplitude, travel time, run-up and directivity has been done. We compared simulated tsunami travel times and elevation with data measured at tide gauges and coastal runup. The model results show that the distribution of maximum amplitude in the Indian Ocean basin is primarily controlled by the classical effects of the directivity and by refraction and focusing along bathymetric features. The results suggest 7-8 m run up height at Nagapatanam, Tamil Nadu, which was the worst affected region in the mainland of India during the 2004 Indian Ocean tsunami

    Tsunami Amplification Due to Resonance in Alberni Inlet: Normal Modes

    No full text

    Understanding global sea levels: past, present and future

    Get PDF
    The coastal zone has changed profoundly during the 20th century and, as a result, society is becoming increasingly vulnerable to the impact of sea-level rise and variability. This demands improved understanding to facilitate appropriate planning to minimise potential losses. With this in mind, the World Climate Research Programme organised a workshop (held in June 2006) to document current understanding and to identify research and observations required to reduce current uncertainties associated with sea-level rise and variability. While sea levels have varied by over 120 m during glacial/interglacial cycles, there has been little net rise over the past several millennia until the 19th century and early 20th century, when geological and tide-gauge data indicate an increase in the rate of sea-level rise. Recent satellite-altimeter data and tide-gauge data have indicated that sea levels are now rising at over 3 mm year−1. The major contributions to 20th and 21st century sea-level rise are thought to be a result of ocean thermal expansion and the melting of glaciers and ice caps. Ice sheets are thought to have been a minor contributor to 20th century sea-level rise, but are potentially the largest contributor in the longer term. Sea levels are currently rising at the upper limit of the projections of the Third Assessment Report of the Intergovernmental Panel on Climate Change (TAR IPCC), and there is increasing concern of potentially large ice-sheet contributions during the 21st century and beyond, particularly if greenhouse gas emissions continue unabated. A suite of ongoing satellite and in situ observational activities need to be sustained and new activities supported. To the extent that we are able to sustain these observations, research programmes utilising the resulting data should be able to significantly improve our understanding and narrow projections of future sea-level rise and variabilit
    • 

    corecore