4 research outputs found

    Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria

    Get PDF
    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0–10 cm (Horizon O); 11–25 cm (Horizon A) and 26–40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil

    Impact of Research Mentoring in Transformation of STEM Education at Southern University at New Orleans Impact of Research Mentoring in Transformation of STEM Education at Southern University at New Orleans

    No full text
    Abstract Performance of minority and women students in STEM education at Southern University at New Orleans has made significant gains for over a decade. This improvement is due largely to research mentoring of undergraduate STEM majors through NSF funded grants such as LS-LAMP, HBCU-UP and S-STEM. This paper documents some of the successes of these grants. Literature The severe shortage of manpower in the sciences, especially among the minority population, is well documented [2

    Statistical Analysis of Nutrient Loads from the Mississippi-Atchafalaya River Basin (MARB) to the Gulf of Mexico

    Get PDF
    This study investigated the annual and seasonal variations in nutrient loads (NO2− + NO3− and orthophosphate) delivered to the Gulf of Mexico from the Mississippi-Atchafalaya River Basin (MARB) and examined the water quality variations. The results indicate that (1) annually, the mean NO2− + NO3− and orthophosphate loads showed a steady increase during 1996–1999, a persistent level during 2000–2007, and a moderate increase during 2008–2016; (2) seasonally, NO2− + NO3− and orthophosphate in MARB in spring and summer were higher than those in autumn and winter. Analysis of variance (ANOVA) identified highly significant differences among seasonal loads; and (3) the median value of NO2− + NO3− in normal weather conditions were higher than that during and right after the hurricanes, while the median value of orthophosphate loads in normal weather conditions was higher than that during the hurricanes, but higher than that right after hurricanes. The two-sample t-test indicates a significant difference (p \u3c 0.046) in orthophosphate loads before and after Hurricane Katrina. Moreover, it is found that there is a significant (p \u3c 0.01) increase in nutrient loads during normal weather conditions. The results indicate that hurricane seasons can significantly influence the nutrient loads from the MARB to the Gulf of Mexico

    Statistical Analysis of Nutrient Loads from the Mississippi-Atchafalaya River Basin (MARB) to the Gulf of Mexico

    No full text
    This study investigated the annual and seasonal variations in nutrient loads (NO2− + NO3− and orthophosphate) delivered to the Gulf of Mexico from the Mississippi-Atchafalaya River Basin (MARB) and examined the water quality variations. The results indicate that (1) annually, the mean NO2− + NO3− and orthophosphate loads showed a steady increase during 1996–1999, a persistent level during 2000–2007, and a moderate increase during 2008–2016; (2) seasonally, NO2− + NO3− and orthophosphate in MARB in spring and summer were higher than those in autumn and winter. Analysis of variance (ANOVA) identified highly significant differences among seasonal loads; and (3) the median value of NO2− + NO3− in normal weather conditions were higher than that during and right after the hurricanes, while the median value of orthophosphate loads in normal weather conditions was higher than that during the hurricanes, but higher than that right after hurricanes. The two-sample t-test indicates a significant difference (p < 0.046) in orthophosphate loads before and after Hurricane Katrina. Moreover, it is found that there is a significant (p < 0.01) increase in nutrient loads during normal weather conditions. The results indicate that hurricane seasons can significantly influence the nutrient loads from the MARB to the Gulf of Mexico
    corecore