17,217 research outputs found
Asymptotic analysis and spectrum of three anyons
The spectrum of anyons confined in harmonic oscillator potential shows both
linear and nonlinear dependence on the statistical parameter. While the
existence of exact linear solutions have been shown analytically, the nonlinear
dependence has been arrived at by numerical and/or perturbative methods. We
develop a method which shows the possibility of nonlinearly interpolating
spectrum. To be specific we analyse the eigenvalue equation in various
asymptotic regions for the three anyon problem.Comment: 28 pages, LaTeX, 2 Figure
Recommended from our members
Neural Representations of Courtship Song in the Drosophila Brain
Acoustic communication in drosophilid flies is based on the production and perception of courtship songs, which facilitate mating. Despite decades of research on courtship songs and behavior in Drosophila, central auditory responses have remained uncharacterized. In this study, we report on intracellular recordings from central neurons that innervate the Drosophila antennal mechanosensory and motor center (AMMC), the first relay for auditory information in the fly brain. These neurons produce graded-potential (nonspiking) responses to sound; we compare recordings from AMMC neurons to extracellular recordings of the receptor neuron population [Johnston's organ neurons (JONs)]. We discover that, while steady-state response profiles for tonal and broadband stimuli are significantly transformed between the JON population in the antenna and AMMC neurons in the brain, transient responses to pulses present in natural stimuli (courtship song) are not. For pulse stimuli in particular, AMMC neurons simply low-pass filter the receptor population response, thus preserving low-frequency temporal features (such as the spacing of song pulses) for analysis by postsynaptic neurons. We also compare responses in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans, and find that pulse song responses are largely similar, despite differences in the spectral content of their songs. Our recordings inform how downstream circuits may read out behaviorally relevant information from central neurons in the AMMC
Classical and Quantum Mechanics of Anyons
We review aspects of classical and quantum mechanics of many anyons confined
in an oscillator potential. The quantum mechanics of many anyons is complicated
due to the occurrence of multivalued wavefunctions. Nevertheless there exists,
for arbitrary number of anyons, a subset of exact solutions which may be
interpreted as the breathing modes or equivalently collective modes of the full
system. Choosing the three-anyon system as an example, we also discuss the
anatomy of the so called ``missing'' states which are in fact known numerically
and are set apart from the known exact states by their nonlinear dependence on
the statistical parameter in the spectrum.
Though classically the equations of motion remains unchanged in the presence
of the statistical interaction, the system is non-integrable because the
configuration space is now multiply connected. In fact we show that even though
the number of constants of motion is the same as the number of degrees of
freedom the system is in general not integrable via action-angle variables.
This is probably the first known example of a many body pseudo-integrable
system. We discuss the classification of the orbits and the symmetry reduction
due to the interaction. We also sketch the application of periodic orbit theory
(POT) to many anyon systems and show the presence of eigenvalues that are
potentially non-linear as a function of the statistical parameter. Finally we
perform the semiclassical analysis of the ground state by minimizing the
Hamiltonian with fixed angular momentum and further minimization over the
quantized values of the angular momentum.Comment: 44 pages, one figure, eps file. References update
Exclusion statistics: A resolution of the problem of negative weights
We give a formulation of the single particle occupation probabilities for a
system of identical particles obeying fractional exclusion statistics of
Haldane. We first derive a set of constraints using an exactly solvable model
which describes an ideal exclusion statistics system and deduce the general
counting rules for occupancy of states obeyed by these particles. We show that
the problem of negative probabilities may be avoided with these new counting
rules.Comment: REVTEX 3.0, 14 page
- …
