126 research outputs found

    Dust properties from GALEX observations of a UV halo around Spica

    Full text link
    GALEX has detected ultraviolet halos extending as far as 5∘^{\circ} around four bright stars (Murthy et al. (2011)). These halos are produced by scattering of starlight by dust grains in thin foreground clouds that are not physically associated with the star. Assuming a simple model consisting of a single layer of dust in front of the star, Murthy et al.(2011) have been able to model these halo intensities and constrain the value of the phase function asymmetry factor gg of the scattering grains in the FUV and NUV. However due to the uncertainty in the dust geometry they could not constrain the albedo. In this work we have tried to constrain the optical constants and dust geometry by modeling the UV halo of Spica. Since the halo emission is not symmetric, we have modeled the Northern and Southern parts of the halo separately. To the North of Spica, the best-fit albedo is 0.26±\pm0.1 and gg is 0.58±\pm0.11 in the FUV at the 90% confidence level. The corresponding limits on the distance and optical depth (τ\tau) of the dust sheet is 3.65±\pm1.05 pc and 0.047±\pm0.006 respectively. However, owing to a complicated dust distribution to the South of Spica, we were unable to uniquely constrain the dust parameters in that region. Nevertheless, by assuming the optical constants of the Northern region and assuming a denser medium, we were able to constrain the distance of the dust to 9.5±\pm1.5 pc and the corresponding τ\tau to 0.04±\pm0.01.Comment: 4 pages, accepted for publication in Earth, Planets and Spac

    The Mystery of the Cosmic Diffuse Ultraviolet Background Radiation

    Full text link
    The diffuse cosmic background radiation in the GALEX far ultraviolet (FUV, 1300 \AA\ - 1700 \AA) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes, and it increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that it might be due to interaction of the dark matter with the nuclei of the interstellar medium but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a "second population" of interstellar grains---grains that are small compared with FUV wavelengths. Such grains are known to exist (Draine 2011) and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μ100\ \mum emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such "smaller" grains at high Galactic latitudes, both North and South; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry & Johnston (1982). We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyman α\alpha---it could be that our "second component" of the diffuse far-ultraviolet background persists shortward of the Lyman limit, and is the cause of the re-ionization of the Universe (Kollmeier et al. 2014).Comment: 73 pages, 31 figures, ApJ accepte

    GALEX Observations of Diffuse UV Radiation at High Spatial Resolution from the Sandage Nebulosity

    Full text link
    Using the GALEX ultraviolet imagers we have observed a region of nebulosity first identified as starlight scattered by interstellar dust by Sandage (1976). Apart from airglow and zodiacal emission, we have found a diffuse UV background of between 500 and 800 \phunit in both the \galex FUV (1350 -- 1750 \AA) and NUV (1750 -- 2850 \AA). Of this emission, up to 250 \phunit is due to \htwo fluorescent emission in the FUV band; the remainder is consistent with scattering from interstellar dust. We have estimated the optical constants to be a=0.3;g=0.7a = 0.3; g = 0.7 in the FUV and a=0.5;g=0.7a = 0.5; g = 0.7 in the NUV, implying highly forward scattering grains, plus an extragalactic contribution of as much as 150 \phunit. These are the highest spatial resolution observations of the diffuse UV background to date and show an intrinsic scatter beyond that expected from instrumental noise alone. Further modeling is required to understand the nature of this scatter and its implications for the ISM.Comment: Total 20 pages, Figures 9, Accepted for publication in Astrophysical Journa
    • …
    corecore