763 research outputs found

    Scattering and absorption characteristics of atmospheric aerosols over a semi-urban coastal environment

    No full text
    The scattering and absorption components of Aerosol Optical Depth (AOD) over a semi-urban coastal location (12.81°N, 80.03°E) near the mega city Chennai in peninsular India are separated using the collocated measurements of Black Carbon concentration and Atmospheric Boundary Layer Height (ABLH) from ERA Interim Reanalysis data assuming that most of the BC is contained and homogeneously mixed in the ABL. It is found that the absorption component to scattering component ratio has a strong seasonal variation with a pronounced maximum in the South West (SW) monsoon season. This is indicative of more effective wet removal of scattering aerosols than absorbing (BC) aerosols. There could also be an effect due to preferential removal of large particles which would have a lower content of BC. The Angstrom wavelength exponent shows a minimum in the SW monsoon season, the minimum being more pronounced for the scattering aerosols implying relative dominance of coarse mode particles. Investigation of the effect of Relative Humidity on scattering and absorption components of AOD revealed that the BC (absorbing) aerosols are non-hydrophilic/not coated with hydrophilic substance

    Micro Finance, Empowerment of Rural Women and MDG3. An Empirical Study in Tamil Nadu

    No full text

    The role of vitamin D in reducing cancer risk and progression

    No full text

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text

    Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb1^{−1} collected by the CMS detector in proton-proton collisions at s \sqrt{s} = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric R-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.[graphic not available: see fulltext

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb1^{−1}. Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT \textrm{T}\overline{\textrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB \textrm{B}\overline{\textrm{B}} production with B quark decays to tW.[graphic not available: see fulltext
    corecore