2 research outputs found

    Age-dependent impact of two exercise training regimens on genomic and metabolic remodeling in skeletal muscle and liver of male mice

    Get PDF
    Skeletal muscle adapts to different exercise training modalities with age; however, the impact of both variables at the systemic and tissue levels is not fully understood. Here, adult and old C57BL/6 male mice were assigned to one of three groups: sedentary, daily high-intensity intermittent training (HIIT), or moderate intensity continuous training (MICT) for 4 weeks, compatible with the older group’s exercise capacity. Improvements in body composition, fasting blood glucose, and muscle strength were mostly observed in the MICT old group, while effects of HIIT training in adult and old animals was less clear. Skeletal muscle exhibited structural and functional adaptations to exercise training, as revealed by electron microscopy, OXPHOS assays, respirometry, and muscle protein biomarkers. Transcriptomics analysis of gastrocnemius muscle combined with liver and serum metabolomics unveiled an age-dependent metabolic remodeling in response to exercise training. These results support a tailored exercise prescription approach aimed at improving health and ameliorating age-associated loss of muscle strength and function in the elderly.This work was supported by funding from the Intramural Research Program of the National Institute on Aging/NIH. Work in JMV laboratory was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) grant BFU2015-64630-R, Ministerio de Ciencia, Innovación y Universidades (MICIU) grant RTI2018-100695-B-I00, Spanish Junta de Andalucía grants P18-RT-4264, 1263735-R and BIO-276, the FEDER Funding Program from the European Union, and Universidad de Córdoba. MCR was supported by a FPU fellowship from the Spanish Ministerio de Educación, Cultura y Deporte (reference FPU14/06308). SRL held a FPI predoctoral contract funded by MINECO (reference BES-2016-078229).Peer reviewe

    Three transmission events of Vibrio cholerae O1 into Lusaka, Zambia

    Get PDF
    Cholera has been present and recurring in Zambia since 1977. However, there is a paucity of data on genetic relatedness and diversity of the Vibrio cholerae isolates responsible for these outbreaks. Understanding whether the outbreaks are seeded from existing local isolates or if the outbreaks represent separate transmission events can inform public health decisions. Seventy-two V. cholerae isolates from outbreaks in 2009/2010, 2016, and 2017/2018 in Zambia were characterized using multilocus variable number tandem repeat analysis (MLVA) and whole genome sequencing (WGS). The isolates had eight distinct MLVA genotypes that clustered into three MLVA clonal complexes (CCs). Each CC contained isolates from only one outbreak. The results from WGS revealed both clustered and dispersed single nucleotide variants. The genetic relatedness of isolates based on WGS was consistent with the MLVA, each CC was a distinct genetic lineage and had nearest neighbors from other East African countries. In Lusaka, isolates from the same outbreak were more closely related to themselves and isolates from other countries than to isolates from other outbreaks in other years. Our observations are consistent with i) the presence of random mutation and alternative mechanisms of nucleotide variation, and ii) three separate transmission events of V. cholerae into Lusaka, Zambia. We suggest that locally, case-area targeted invention strategies and regionally, well-coordinated plans be in place to effectively control future cholera outbreaks.https://doi.org/10.1186/s12879-021-06259-
    corecore