4 research outputs found

    Single-cell analysis of event-time correlations in signaling cascades

    Get PDF

    Impact of Experimental Variables on the Protein Binding of Tigecycline in Human Plasma as Determined by Ultrafiltration

    No full text
    Tigecycline, a tetracycline derivative, shows atypical plasma protein binding behavior. The unbound fraction decreases with increasing concentration at therapeutic concentrations. Moreover, uncertainty exists about the magnitude of tigecyline's protein binding in man. Unbound fractions between 2.5% and 35% have been reported in plasma from healthy volunteers, and between 25% and 100% in patients, respectively. In the present study, the protein binding of tigecycline has been investigated by ultrafiltration using different experimental conditions. Whereas temperature had only a marginal influence, the unbound fraction at 0.3/3.0 mg/L was low at pH 8.2 (9.4%/1.9%) or in unbuffered pooled plasma (6.3%/1.2%), compared with plasma buffered with HEPES to pH 7.4 (65.9%/39.7%). In experiments with phosphate buffer and EDTA, the concentration dependency was markedly attenuated or abolished, which is compatible with a cooperative binding mechanism involving divalent cations such as calcium. The unbound fraction in clinical plasma samples from patients treated with tigecycline was determined to 66.3 +/- 13.7% at concentrations 1 to < 5 mg/L. To summarize, tigecycline appears to be only moderately bound to plasma proteins as determined by ultrafiltration, when a physiological pH is maintained. (c) 2018 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved

    Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines

    No full text
    Manufactured nanomaterials (MNMs) selected from a library of over 120 different MNMs with varied compositions, sizes, and surface coatings were tested by four different laboratories for toxicity by high-throughput/-content (HT/C) techniques. The selected particles comprise 14 MNMs composed of CeO2, Ag, TiO2, ZnO and SiO2 with different coatings and surface characteristics at varying concentrations. The MNMs were tested in different mammalian cell lines at concentrations between 0.5 and 250 µg/mL to link physical-chemical properties to multiple adverse effects. The cell lines are derived from relevant organs such as liver, lung, colon and the immune system. Endpoints such as viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential, lysosomal acidification and steatosis have been studied. Soluble MNMs, Ag and ZnO, were the most toxic in all cell types. TiO2 and SiO2 MNMs also triggered toxicity in some, but not all, cell types and the cell-type specific effects were influenced by the specific coating. CeO2 MNMs were nearly ineffective in our test systems. Differentiated liver cells appear to be most sensitive to MNMs, in particular to TiO2 MNMs. Whereas most of the investigated MNMs showed no acute toxicity, it became clear that some show adverse effects dependent on the assay and cell line. Hence, it is advised that future nanosafety studies utilise a multi-parametric approach such as HT/C screening to avoid missing signs of toxicity. Furthermore, some of the cell type specific effects should be followed up in more detail and might also provide an incentive to address potential adverse effects in vivo in the relevant organ.JRC.F.3-Chemicals Safety and Alternative Method
    corecore