53,635 research outputs found

    Self-similar dynamics of bacterial chemotaxis

    Full text link
    Colonies of bacteria grown on thin agar plate exhibit fractal patterns as a result of adaptation to their environments. The bacterial colony pattern formation is regulated crucially by chemotaxis, the movement of cells along a chemical concentration gradient. Here, the dynamics of pattern formation in bacterial colony is investigated theoretically through a continuum model that considers chemotaxis. In the case of the gradient sensed by the bacterium is nearly uniform, the bacterial colony patterns are self-similar, which they look the same at every scale. The scaling law of the bacterial colony growth has been revealed explicitly. Chemotaxis biases the movement of bacterial population in colony trend toward the chemical attractant. Moreover, the bacterial colonies evolve long time as the traveling wave with sharp front.Comment: 4 pages, 3 figures, accepted by Phys. Rev. E (Brief Report

    Eccentric discs in binaries with intermediate mass ratios: Superhumps in the VY Sculptoris stars

    Full text link
    We investigate the role of the eccentric disc resonance in systems with mass ratios q greater than 1/4, and demonstrate the effects that changes in the mass flux from the secondary star have upon the disc radius and structure. The addition of material with low specific angular momentum to its outer edge restricts a disc radially. Should the mass flux from the secondary be reduced, it is possible for the disc in a system with mass ratio as large as 1/3 to expand to the 3:1 eccentric inner Lindblad resonance and for superhumps to be excited.Comment: 6 pages with 7 figures, accepted by MNRA

    The effect of a planet on the dust distribution in a 3D protoplanetary disk

    Get PDF
    Aims: We investigate the behaviour of dust in protoplanetary disks under the action of gas drag in the presence of a planet. Our goal is twofold: to determine the spatial distribution of dust depending on grain size and planet mass, and therefore to provide a framework for interpretation of coming observations and future studies of planetesimal growth. Method: We numerically model the evolution of dust in a protoplanetary disk using a two-fluid (gas + dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a minimum mass solar nebula (MMSN) disk comprising 1% dust by mass in the presence of an embedded planet. We run a series of simulations which vary the grain size and planetary mass to see how they affect the resulting disk structure. Results: We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a completely different appearance depending on the grain size. For low mass planets in our MMSN disk, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may enhance the formation of a second planet by facilitating the growth of planetesimals in this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    The effects of tidally induced disc structure on white dwarf accretion in intermediate polars

    Full text link
    We investigate the effects of tidally induced asymmetric disc structure on accretion onto the white dwarf in intermediate polars. Using numerical simulation, we show that it is possible for tidally induced spiral waves to propagate sufficiently far into the disc of an intermediate polar that accretion onto the central white dwarf could be modulated as a result. We suggest that accretion from the resulting asymmetric inner disc may contribute to the observed X-ray and optical periodicities in the light curves of these systems. In contrast to the stream-fed accretion model for these periodicities, the tidal picture predicts that modulation can exist even for systems with weaker magnetic fields where the magnetospheric radius is smaller than the radius of periastron of the mass transfer stream. We also predict that additional periodic components should exist in the emission from low mass ratio intermediate polars displaying superhumps.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Rehabilitation robot cell for multimodal standing-up motion augmentation

    Get PDF
    The paper presents a robot cell for multimodal standing-up motion augmentation. The robot cell is aimed at augmenting the standing-up capabilities of impaired or paraplegic subjects. The setup incorporates the rehabilitation robot device, functional electrical stimulation system, measurement instrumentation and cognitive feedback system. For controlling the standing-up process a novel approach was developed integrating the voluntary activity of a person in the control scheme of the rehabilitation robot. The simulation results demonstrate the possibility of “patient-driven” robot-assisted standing-up training. Moreover, to extend the system capabilities, the audio cognitive feedback is aimed to guide the subject throughout rising. For the feedback generation a granular synthesis method is utilized displaying high-dimensional, dynamic data. The principle of operation and example sonification in standing-up are presented. In this manner, by integrating the cognitive feedback and “patient-driven” actuation systems, an effective motion augmentation system is proposed in which the motion coordination is under the voluntary control of the user

    Mechanochemical models for generating biological pattern and form in development

    Get PDF
    The central issue in development is the formation of spatial patterns of cells in the early embryo. The mechanisms which generate these patterns are unknown. Here we describe the new Oster-Murray mechanochemical approach to the problem, the elements of which are experimentally well documented. By way of illustration we derive one of the basic models from first principles and apply it to a variety of problems of current interest and research. We specifically discuss the formation of skin organ patterns, such as feather and scale germs, cartilage condensations in the developing vertebrate limb and finally wound healing

    Chemotactic Collapse and Mesenchymal Morphogenesis

    Full text link
    We study the effect of chemotactic signaling among mesenchymal cells. We show that the particular physiology of the mesenchymal cells allows one-dimensional collapse in contrast to the case of bacteria, and that the mesenchymal morphogenesis represents thus a more complex type of pattern formation than those found in bacterial colonies. We finally compare our theoretical predictions with recent in vitro experiments

    Direction Detector on an Excitable Field: Field Computation with Coincidence Detection

    Get PDF
    Living organisms process information without any central control unit and without any ruling clock. We have been studying a novel computational strategy that uses a geometrically arranged excitable field, i.e., "field computation." As an extension of this research, in the present article we report the construction of a "direction detector" on an excitable field. Using a numerical simulation, we show that the direction of a input source signal can be detected by applying the characteristic as a "coincidence detector" embedded on an excitable field. In addition, we show that this direction detection actually works in an experiment using an excitable chemical system. These results are discussed in relation to the future development of "field computation."Comment: 6 pages, 3 figure
    • 

    corecore